精英家教网 > 高中数学 > 题目详情

已知m为常数,函数为奇函数.
(1)求m的值;
(2)若,试判断的单调性(不需证明);
(3)若,存在,使,求实数k的最大值.

(1);(2)在R上单调递增;(3).

解析试题分析: (1)由奇函数的定义得:,将解析式代入化简便可得m的值;
(2),结合指数函数与反比例函数的单调性,便可判定的单调性;
(3)对不等式:,不宜代入解析式来化简,而应将进行如下变形:
,然后利用单调性去掉,从而转化为:.
进而变为:.由题设知:.这样只需求出的最大值即可. 而,所以在[-2,2]上单调递增,
所以.
试题解析:(1)由,得,
,即,
.                      ..4分
(2),在R上单调递增. 7分
(3)由,9分
.
,则
所以在[-2,2]上单调递增,
所以
所以,从而.12分
考点:1、函数的奇偶性和单调性;2、不等关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,恒过定点
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,直接写出的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)若恒成立,求的最大值;
(2)若为常数,且,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.

(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,证明:函数不是奇函数;
(2)设函数是奇函数,求的值;
(3)在(2)条件下,判断并证明函数的单调性,并求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)= 是奇函数
(1)求实数m的值
(2)若函数f(x)在区间上单调递增,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数.
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一个根, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为
(1)求
(2)当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求函数的单调区间;
(Ⅱ)若,对都有成立,求实数的取值范围;
(Ⅲ)证明:).

查看答案和解析>>

同步练习册答案