精英家教网 > 高中数学 > 题目详情

已知函数.
(I)求函数的单调区间;
(Ⅱ)若,对都有成立,求实数的取值范围;
(Ⅲ)证明:).

(I)当时,单调递增区间为(0,+∞).当m>0时,单调递增区间为(0,),单调递减区间为(,+∞). (Ⅱ)实数的取值范围为.(Ⅲ)详见解析.

解析试题分析:(I)应用导数研究函数的单调性.遵循“求导数,令导数大(小)于0,解不等式,求单调区间”.
(Ⅱ)将问题转化成“对都有”,
通过求,得到函数在[2,2]上是增函数,
求得=g(2)=2-,利用2-,及得到实数的取值范围为.
(Ⅲ)通过构造函数,利用(I)确定的单调性得到,(当时取“=”号),利用“错位相减法”求得S=
证得).
试题解析:(I)   1分
在(0,+∞)单调递增. 2分
当m>0时,由    

>   4分
综上所述:当时,单调递增区间为(0,+∞).
当m>0时,单调递增区间为(0,),单调递减区间为(,+∞).   5分
(Ⅱ)若m=,,对都有成立等价于对都有 6分
由(I)知在[2,2]上的最大值= 7分

函数在[2,2]上是增函数,
=g(2)=2-,    9分
由2-,得,又因为,∴
所以实数的取值范围为. 10分
(Ⅲ)证明:令m=,则
由(I)知f(x)在(0,1)单调递增,(1,+∞)单调递减,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知m为常数,函数为奇函数.
(1)求m的值;
(2)若,试判断的单调性(不需证明);
(3)若,存在,使,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,解不等式
(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, .
(1)若, 函数 在其定义域是增函数,求的取值范围;
(2)在(1)的结论下,设函数的最小值;
(3)设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,,其中R.
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数为有理数且),求函数的最小值;
(2)①试用(1)的结果证明命题:设为有理数且,若时,则
②请将命题推广到一般形式,并证明你的结论;
注:当为正有理数时,有求导公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数,其中是自然对数的底数。
(1)判断在R上的单调性;
(2)当时,求上的最值。

查看答案和解析>>

同步练习册答案