已知函数.
(I)求函数的单调区间;
(Ⅱ)若,对都有成立,求实数的取值范围;
(Ⅲ)证明:(且).
(I)当时,单调递增区间为(0,+∞).当m>0时,单调递增区间为(0,),单调递减区间为(,+∞). (Ⅱ)实数的取值范围为.(Ⅲ)详见解析.
解析试题分析:(I)应用导数研究函数的单调性.遵循“求导数,令导数大(小)于0,解不等式,求单调区间”.
(Ⅱ)将问题转化成“对都有”,
通过求,得到函数在[2,2]上是增函数,
求得=g(2)=2-,利用2-,及得到实数的取值范围为.
(Ⅲ)通过构造函数,利用(I)确定的单调性得到,(当时取“=”号),利用“错位相减法”求得S=
证得().
试题解析:(I) 1分
当时,在(0,+∞)单调递增. 2分
当m>0时,由得
由得
由得> 4分
综上所述:当时,单调递增区间为(0,+∞).
当m>0时,单调递增区间为(0,),单调递减区间为(,+∞). 5分
(Ⅱ)若m=,,对都有成立等价于对都有 6分
由(I)知在[2,2]上的最大值= 7分
函数在[2,2]上是增函数,
=g(2)=2-, 9分
由2-,得,又因为,∴∈
所以实数的取值范围为. 10分
(Ⅲ)证明:令m=,则
由(I)知f(x)在(0,1)单调递增,(1,+∞)单调递减,
科目:高中数学 来源: 题型:解答题
已知函数, .
(1)若, 函数 在其定义域是增函数,求的取值范围;
(2)在(1)的结论下,设函数的最小值;
(3)设函数的图象与函数的图象交于点,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,,其中R.
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,,总有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明().
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知函数为有理数且),求函数的最小值;
(2)①试用(1)的结果证明命题:设为有理数且,若时,则;
②请将命题推广到一般形式,并证明你的结论;
注:当为正有理数时,有求导公式
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com