精英家教网 > 高中数学 > 题目详情

设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明).

(1).(2).    
(3)转化成.所以.通过“放缩”,“裂项求和”。

解析试题分析:
(1)因为时,取得极值,所以
   故.                       3分
(2)的定义域为
要使在定义域内为增函数,
只需在内有恒成立,
恒成立,         5分
         7分

因此,若在其定义域内为增函数,则的取值范围是.     9分
(3)证明:
=-1时,,其定义域是
,得.
处取得极大值,也是最大值.
.所以上恒成立.因此.
因为,所以.
.
所以
=<
==.
所以结论成立.                                 13分
考点:利用导数研究函数的单调性、极值,不等式恒成立问题,不等式的证明。。
点评:难题,利用导数研究函数的单调性、极值,是导数应用的基本问题,主要依据“在给定区间,导函数值非负,函数为增函数;导函数值非正,函数为减函数”。确定函数的极值,遵循“求导数,求驻点,研究单调性,求极值”。不等式恒成立问题,往往通过构造函数,研究函数的最值,使问题得到解决。本题不等式证明过程中,利用“放缩法”,转化成易于求和的数列,体现解题的灵活性。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为偶函数.
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一个根, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求函数的单调区间;
(Ⅱ)若,对都有成立,求实数的取值范围;
(Ⅲ)证明:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
若函数上是增函数,在是减函数,求的值;
讨论函数的单调递减区间;
如果存在,使函数,在处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)请写出函数在每段区间上的解析式,并在图中的直角坐标系中作出函数的图象;
(II)若不等式对任意的实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足:),
(1)用反证法证明:不可能为正比例函数;
(2)若,求的值,并用数学归纳法证明:对任意的,均有:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若不等式的解集.求的值;
(2)若的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(
证明:

查看答案和解析>>

同步练习册答案