设函数
,
(1)若不等式
的解集
.求
的值;
(2)若
求
的最小值.
科目:高中数学 来源: 题型:解答题
设函数
.
(1)若x=
时,
取得极值,求
的值;
(2)若
在其定义域内为增函数,求
的取值范围;
(3)设
,当
=-1时,证明
在其定义域内恒成立,并证明
(
).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知函数
为有理数且
),求函数
的最小值;
(2)①试用(1)的结果证明命题
:设
为有理数且
,若
时,则
;
②请将命题
推广到一般形式
,并证明你的结论;
注:当
为正有理数时,有求导公式![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
的定义域为
,若
在
上为增函数,则称
为“一阶比增函数”.
(Ⅰ) 若
是“一阶比增函数”,求实数
的取值范围;
(Ⅱ) 若
是“一阶比增函数”,求证:
,
;
(Ⅲ)若
是“一阶比增函数”,且
有零点,求证:
有解.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值.]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com