已知函数
的定义域为
,若
在
上为增函数,则称
为“一阶比增函数”.
(Ⅰ) 若
是“一阶比增函数”,求实数
的取值范围;
(Ⅱ) 若
是“一阶比增函数”,求证:
,
;
(Ⅲ)若
是“一阶比增函数”,且
有零点,求证:
有解.
科目:高中数学 来源: 题型:解答题
已知幂函数
的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-
在(0,1)上为减函数.
①求a的值;
②若
,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足
,
,求数列{an}的通项公式an和sn.
③设
,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
是奇函数。
(1)求实数a的值;
(2)判断函数
在R上的单调性并用定义法证明;
(3)若函数
的图像经过点
,这对任意
不等式
≤
恒成立,求实数m的范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数
,其中
为常数.
(Ⅰ)当
时,判断函数
在定义域上的单调性;
(Ⅱ)当
时,求
的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数
,不等式
都成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com