精英家教网 > 高中数学 > 题目详情

(13) 已知F1F2为椭圆的两个焦点,过F1的直线交椭圆于AB两点

    若|F2A|+|F2B|=12,则|AB|=             

8


解析:

本小题主要考查椭圆的第一定义的应用。依题直线过椭圆的 左焦点,在中,,又,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在R上定义运算:p?q=-
1
3
(p-c)(q-b)+4bc
(b、c∈R是常数),已知f1(x)=x2-2c,f2(x)=x-2b,f(x)=f1(x)f2(x).
①如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值;
②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;
③记g(x)=|f′(x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,半焦距为c,直线x=-
a2
c
与x轴的交点为N,满足
F1F2
=2
NF1
,|
F1F2
|=2
,设A、B是上半椭圆上满足
NA
NB
的两点,其中λ∈[
1
5
1
3
]

(1)求椭圆的方程及直线AB的斜率k的取值范围;
(2)过A、B两点分别作椭圆的切线,两切线相交于一点P,试问:点P是否恒在某定直线上运动,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知F1、F2为椭圆的焦点,P为椭圆上的任意一点,椭圆的离心率为
1
3
.以P为圆心PF2长为半径作圆P,当圆P与x轴相切时,截y轴所得弦长为
12
55
9

(1)求圆P方程和椭圆方程;
(2)求证:无论点P在椭圆上如何运动,一定存在一个定圆与圆P相切,试求出这个定圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知F1,F2是双曲线的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此双曲线上,则此双曲线的离心率为
3
+1
3
+1

查看答案和解析>>

同步练习册答案