精英家教网 > 高中数学 > 题目详情
(2012•九江一模)如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,AB=2,PA=2
2
,M是PA的中点.
(1)求证:平面PCD∥平面MBE;
(2)设PA=λAB,当二面角D-ME-F的大小为135°,求λ的值.
分析:(1)证明平面PCD∥平面MBE,利用面面平行的判定定理,证明一个平面内的两条相交直线平行于另一平面即可;
(2)不妨设AB=2,则PA=2λ,以A为坐标原点,AE,AB,AP所在直线分别为x,y,z轴,建立空间直角坐标系,求出平面DME的法向量,平面FME的法向量为
n
=(-λ,
3
λ,-2
3
)
,利用向量夹角公式,建立方程,即可求得结论.
解答:(1)证明:连接AD交BE于点G,连接MG,则点G是正六边形的中心,所以G是线段AD的中点
∵M是PA的中点,∴MG∥PD
∵PD?平面MBE,MG?平面MBE
∴PD∥平面MBE
∵DC∥BE,DC?平面MBE,BE?平面MBE
∴DC∥平面MBE
∵PD∩DC=D
∴平面PCD∥平面MBE;
(2)解:不妨设AB=2,则PA=2λ,在正六边形ABCDEF中,连接AE,过点F作FH⊥AE,垂足为H,则FH=AFsin∠FAE=1,AH=AFcos∠FAE=
3
,AE=2
3
,以A为坐标原点,AE,AB,AP所在直线分别为x,y,z轴,建立空间直角坐标系,则A(0,0,0),E(2
3
,0,0),D(2
3
,2,0),F(
3
,-1,0),M(0,0,λ)
EM
=(-2
3
,0,λ),
ED
=(0,2,0),
EF
=(-
3
,-1,0)
设平面DME的法向量为
m
=(x,y,z)

m
ED
=0
m
EM
=0
2y=0
-2
3
x+λz=0
,取z=2
3
,则
m
=(λ,0,2
3
)

同理可得平面FME的法向量为
n
=(-λ,
3
λ,-2
3
)

cos<
m
n
=
-λ2-12
λ2+12
4λ2+12

∵二面角D-ME-F的大小为135°
-λ2-12
λ2+12
4λ2+12
=-
2
2

∴λ2=6
∵λ>0,
λ=
6
点评:本题考查面面平行,考查面面角,解题的关键是掌握面面平行的判定方法,确定平面的法向量,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•九江一模)设变量x,y满足|x-2|+|y-2|≤1,则
y-x
x+1
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•九江一模)已知复数z=
1
2
-
3
2
i,
.
z
是z的共轭复数,则z2=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•九江一模)已知集合A={x|
1
x
<-1},B={x|-1<x<0},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•九江一模)曲线y=xlnx在点(e,e)处的切线与直线x+ay=1垂直,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•九江一模)已知-9,a1,a2,a3,-1五个实数成等差数列,-9,b1,b2,b3,-1五个实数成等比数列,则
a1a3
b2
等于(  )

查看答案和解析>>

同步练习册答案