【题目】如图,在四棱柱中,底面是边长为的菱形,.
(1)证明:平面平面;
(2)若,是等边三角形,求点到平面的距离.
【答案】(1)见解析;(2).
【解析】
(1)连接交于点,可知点为的中点,利用等腰三角形三线合一的性质可得出,利用菱形的性质可得出,可得出平面,结合面面垂直的判定定理可得出结论;
(2)计算出,并推导出平面,平面,进而可得出到平面的距离与点到平面的距离相等,即为.
(1)如图,设与相交于点,连接,
因为四边形为菱形,故,为的中点.
又,故.
又平面,平面,且,故平面.
又平面,所以平面平面;
(2)底面是边长为的菱形,又,所以,.
又是等边三角形,可得,,.
由(1)可知,,平面,
平面,则,所以.
设交于点,
又,,所以平行四边形为菱形,故.
又,,,所以平面.
平面,所以.
,所以平面,故为在平面内的射影,故点到平面的距离为.
又,平面,所以平面.
故点到平面的距离与点到平面的距离相等,
所以点到平面的距离为.
科目:高中数学 来源: 题型:
【题目】已知椭圆()的离心率为,且经过点.
(1)求椭圆的方程;
(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2元.
(1)设1箱零件人工检验总费用为元,求的分布列;
(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6元.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是边长为2的正方形,平面平面,且,是线段的中点,过作直线,是直线上一动点.
(1)求证:;
(2)若直线上存在唯一一点使得直线与平面垂直,求此时二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次体质健康测试中,某辅导员随机抽取了12名学生的体质健康测试成绩做分析,得到这12名学生的测试成绩分别为87,87,98,86,78,86,88,52,86,90,65,72.
(1)请绘制这12名学生体质健康测试成绩的茎叶图,并指出该组数据的中位数;
(2)从抽取的12人中随机选取3人,记表示成绩不低于76分的学生人数,求的分布列及期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:
20以下 | 70以上 | ||||||
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;
(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;
(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆恒过点,且与直线相切.
(1)求圆心的轨迹的方程;
(2)设是轨迹上横坐标为2的点,的平行线交轨迹于,两点,交轨迹在处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:
(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;
(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;
(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月1日我国隆重纪念了建国70周年,期间进行了一系列大型庆祝活动,极大地激发了全国人民的爱国热情.某校高三学生也投入到了这场爱国活动中,他(她)们利用周日休息时间到社区做义务宣讲员,学校为了调查高三男生和女生周日的活动时间情况,随机抽取了高三男生和女生各40人,对他(她)们的周日活动时间进行了统计,分别得到了高三男生的活动时间(单位:小时)的频数分布表和女生的活动时间(单位:小时)的频率分布直方图.(活动时间均在内)
活动时间 | ||||||
频数 | 8 | 10 | 7 | 9 | 4 | 2 |
(1)根据调查,试判断该校高三年级学生周日活动时间较长的是男生还是女生?并说明理由;
(2)在被抽取的80名高三学生中,从周日活动时间在内的学生中抽取2人,求恰巧抽到1男1女的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com