精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱柱中,底面是边长为的菱形,.

1)证明:平面平面

2)若是等边三角形,求点到平面的距离.

【答案】1)见解析;(2.

【解析】

1)连接于点,可知点的中点,利用等腰三角形三线合一的性质可得出,利用菱形的性质可得出,可得出平面,结合面面垂直的判定定理可得出结论;

2)计算出,并推导出平面平面,进而可得出到平面的距离与点到平面的距离相等,即为.

1)如图,设相交于点,连接

因为四边形为菱形,故的中点.

,故

平面平面,且,故平面.

平面,所以平面平面

2)底面是边长为的菱形,又,所以.

是等边三角形,可得

由(1)可知平面

平面,则,所以

于点

,所以平行四边形为菱形,故

,所以平面

平面,所以.

,所以平面,故在平面内的射影,故点到平面的距离为

平面,所以平面

故点到平面的距离与点到平面的距离相等,

所以点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,且经过点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2.

1)设1箱零件人工检验总费用为元,求的分布列;

2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为2的正方形,平面平面,且是线段的中点,过作直线是直线上一动点.

1)求证:

2)若直线上存在唯一一点使得直线与平面垂直,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次体质健康测试中,某辅导员随机抽取了12名学生的体质健康测试成绩做分析,得到这12名学生的测试成绩分别为878798867886885286906572.

1)请绘制这12名学生体质健康测试成绩的茎叶图,并指出该组数据的中位数;

2)从抽取的12人中随机选取3人,记表示成绩不低于76分的学生人数,求的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:

20以下

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;

(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;

(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆恒过点,且与直线相切.

1)求圆心的轨迹的方程;

2)设是轨迹上横坐标为2的点,的平行线交轨迹两点,交轨迹处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此东风,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:

1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;

2)已知种植该蔬菜每年固定的成本为6千元/.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;

3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019101日我国隆重纪念了建国70周年,期间进行了一系列大型庆祝活动,极大地激发了全国人民的爱国热情.某校高三学生也投入到了这场爱国活动中,他()们利用周日休息时间到社区做义务宣讲员,学校为了调查高三男生和女生周日的活动时间情况,随机抽取了高三男生和女生各40人,对他()们的周日活动时间进行了统计,分别得到了高三男生的活动时间(单位:小时)的频数分布表和女生的活动时间(单位:小时)的频率分布直方图.(活动时间均在内)

活动时间

频数

8

10

7

9

4

2

1)根据调查,试判断该校高三年级学生周日活动时间较长的是男生还是女生?并说明理由;

2)在被抽取的80名高三学生中,从周日活动时间在内的学生中抽取2人,求恰巧抽到11女的概率.

查看答案和解析>>

同步练习册答案