精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x+2,则f(1)+f′(1)的值等于
 
考点:利用导数研究曲线上某点切线方程
专题:导数的概念及应用
分析:由题意得到f′(1)=3,进一步求得f(1)=3×1+2=5,则答案可求.
解答: 解:∵函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x+2,
∴f′(1)=3,且f(1)=3×1+2=5.
∴f(1)+f′(1)=8.
故答案为:8.
点评:本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点的切线的斜率,就是函数在该点处的导数值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点分别为A(5,0),B(0,4),C(-2,0)
(1)求BC边长的中线AD所在直线方程
(2)求边BC的中垂线所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、函数f(x)=
1
x
在其定义域上是减函数
B、两个三角形全等是这两个三角形面积相等的必要条件
C、命题“?x∈R,x2+x+2013>0”的否定是“?x∈R,x2+x+2013<0”
D、给定命题p、q,若p∧q是真命题,则¬p是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的解析式为f(x)=
3x+5,x≤0
x+5,0<x≤1
-2x+8,x>1
,求f(
3
2
),f(
1
π
),f(-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值
(1)求a,b的值与函数f(x)的单调区间;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)函数f(x)=
1-2log6x
的定义域为
 

(2)已知函数f(2x)的定义域是[-1,1],求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2(x>0)
1(x=0)
0(x<0)
,求f(1)=(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={1,2,3,4},B={2,4,7,8},C={0,1,3,4,5},则集合(A∪B)∩C等于(  )
A、{2,4}
B、{1,3,4}
C、{2,4,7,8}
D、{0,1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
2
(x-1)2+a的定义域和值域都是[1,b](b>1),求a,b的值.

查看答案和解析>>

同步练习册答案