精英家教网 > 高中数学 > 题目详情

【题目】如图,四面体ABCD中,△ABC是正三角形,AD=CD

(1)证明:ACBD

(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比.

【答案】(1)见解析;(2)1:1.

【解析】试题分析:(1)取的中点,由等腰三角形及等边三角形的性质得 ,再根据线面垂直的判定定理得平面,即得ACBD;(2)先由AEEC,结合平面几何知识确定,再根据锥体的体积公式得所求体积之比为1:1.

试题解析:

(1)取AC的中点O,连结DOBO.

因为AD=CD,所以ACDO.

又由于是正三角形,所以ACBO.

从而AC⊥平面DOB,故ACBD.

(2)连结EO.

由(1)及题设知∠ADC=90°,所以DO=AO.

中, .

AB=BD,所以

,故∠DOB=90°.

由题设知为直角三角形,所以.

是正三角形,且AB=BD,所以.

EBD的中点,从而E到平面ABC的距离为D到平面ABC的距离的,四面体ABCE的体积为四面体ABCD的体积的,即四面体ABCE与四面体ACDE的体积之比为1:1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了得到函数y=cos( x+ )的图象,只要把y=cos x的图象上所有的点(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R 且周期为1的函数,在区间上, 其中集合D=,则方程f(x)-lgx=0的解的个数是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各棱长都等于4的四面ABCD中,设G为BC的中点,E为△ACD内的动点(含边界),且GE∥平面ABD,若 =1,则| |=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=3ax2﹣2(a+b)x+b,(0≤x≤1)其中a>0,b为任意常数.
(I)若b= ,f(x)=|x﹣ |在x∈[0,1]有两个不同的解,求实数a的范围.
(II)当|f(0)|≤2,|f(1)|≤2时,求|f(x)|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,tanA是以﹣4为第三项,4为第七项的等差数列的公差,tanB是以 为第三项,9为第六项的等比数列公比,则这个三角形是( )
A.钝角三角形
B.锐角三角形
C.等腰直角三角形
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2 , 在x=1处有极大值3,则f(x)的极小值为(
A.0
B.1
C.2
D.﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2﹣2x﹣4lnx,则f(x)的单调递增区间为(
A.(﹣1,0)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,设点F(1,0),直线l:x=﹣1,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
(1)求动点Q的轨迹的方程;
(2)记Q的轨迹的方程为E,过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求证:直线MN必过定点R(3,0).

查看答案和解析>>

同步练习册答案