精英家教网 > 高中数学 > 题目详情
已知α∈(0,
π
2
),tan(π-α)=-
3
4
,则sinα
=
 
分析:利用诱导公式求出tanα,通过同角三角函数的基本关系式求出sinα的值.
解答:解:α∈(0,
π
2
),tan(π-α)=-
3
4
,所以tan(π-α)=-tanα=-
3
4
,即tanα=
3
4

sinα
cosα
=
3
4
  ①sin2a+cos2α=1   ②
解①②得sinα=
3
5

故答案为:
3
5
点评:本题考查同角三角函数的基本关系式的应用,注意角的范围,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①已知tanα=1,α∈(0,
π
2
)
,求
2cos2
α
2
-sinα-1
2
sin(
π
4
+α)
的值;
②已知θ∈(0,
π
2
)
,且sin(
π
4
+θ)
=
3
2
,求sin(
π
4
+2θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0≤θ<2π,复数
i
cosθ+isinθ
>0
,则θ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ∈(0,
π
2
)
sinθ-cosθ=
2
2
,则cos2θ=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0≤x≤
π
2
,则函数y=cos(
π
12
-x)+cos(
12
+x)的值域是
[-
2
2
6
2
]
[-
2
2
6
2
]

查看答案和解析>>

同步练习册答案