【题目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若满足g(x)=﹣1的x有四个,则t的取值范围是( )
A.
B.
C.
D.
【答案】B
【解析】解:令y=xex , 则y'=(1+x)ex , 由y'=0,得x=﹣1, 当x∈(﹣∞,﹣1)时,y'<0,函数y单调递减,
当x∈(﹣1,+∞)时,y'>0,函
数y单调递增.作出y=xex图象,
利用图象变换得f(x)=|xex|图象(如图10),
令f(x)=m,则关于m方程h(m)=m2﹣tm+1=0
两根分别在 时(如图11),
满足g(x)=﹣1的x有4个,由 ,
解得 .
故选:B.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.
(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;
(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;
(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.
(Ⅰ)若a=1,解不等式f(x)<6;
(Ⅱ)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的”更相减损术“.执行该程序框图,若输入a,b,i的值分别为6,8,0时,则输出的i=( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1 , k2 , 满足k1k2=4,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金 ,第2关收税金为剩余金的 ,第3关收税金为剩余金的 ,第4关收税金为剩余金的 ,第5关收税金为剩余金的 ,5关所收税金之和,恰好重1斤,问原来持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原来持金多少?”改成假设这个原来持金为x,按此规律通过第8关,则第8关需收税金为x.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com