精英家教网 > 高中数学 > 题目详情
17.已知x>0,函数f(x)=$\frac{{x}^{2}-3x+1}{x}$的最小值是-1.

分析 由x>0,f(x)化为x+$\frac{1}{x}$-3,由基本不等式即可得到最小值.

解答 解:由x>0,f(x)=$\frac{{x}^{2}-3x+1}{x}$
=x+$\frac{1}{x}$-3≥2$\sqrt{x•\frac{1}{x}}$-3
=2-3=-1.
当且仅当x=1,取得最小值,且为-1.
故答案为:-1.

点评 本题考查基本不等式的运用:求最值,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.己知函数f(x-1)=x2+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)是定义R上的奇函数,在[0,+∞)上为增函数,若f(1-a)+f($\frac{1}{2}$-2a)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,|an+1-an|=pn,n∈N+.若{an}是递增数列,且a1,2a2,3a3成等差数列,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知关于x的不等式ax2+bx+c>0的解集是{x|x>2或x<$\frac{1}{2}$},求关于x的不等式ax2-bx+c≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若f(x)是二次函数,且满足f(0)=3,f(x-1)-f(x)=-4x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)为T=2的周期函数,在区间[-1,1]上,f(x)=$\left\{\begin{array}{l}{ax+1,x∈[-1,0]}\\{\frac{bx+2}{x+1},x∈[0,1]}\end{array}\right.$,其中a,b∈R,若f($\frac{1}{2}$)=f($\frac{3}{2}$),求a+3b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知在△ABC中,A=60°,$\frac{BC}{AB}$=$\frac{5}{2}$,则sinC=$\frac{\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.经过点A(0,2)与抛物线y2=4x只有一个交点的直线方程是(  )
A.x-2y+4=0B.x-2y+4=0或y=2
C.x-2y+4=0或x=0D.x-2y+4=0或y=2或x=0

查看答案和解析>>

同步练习册答案