精英家教网 > 高中数学 > 题目详情
7.己知函数f(x-1)=x2+x+1,求f(x)的解析式.

分析 直接利用配方法求解函数的解析式即可.

解答 解:函数f(x-1)=x2+x+1=(x-1)2+3(x-1)+3.
f(x)的解析式为:f(x)=x2+3x+3.

点评 本题考查函数的解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若输出的i=5,则k的最小正整数值为(  )
A.88B.89C.8095D.8096

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.过点M(0,1)的直线l与圆心在原点的圆相交于A、B两点,若弦长|AB|=$\sqrt{14}$,△A0B的面积为$\frac{\sqrt{7}}{2}$,求直线l与圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:
(1)$\frac{sin(180°-α)sin(270°-α)tan(90°-α)}{sin(90°+α)tan(270°+α)tan(360°-α)}$;
(2)1+sin(α-2π)•sin(π+α)-2cos2(-α)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.根据下列条件分别求出函数f(x)的解析式
(1)f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$
(2)f(x)+2f($\frac{1}{x}$)=3x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义运算“*”如下:x*y=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若函数f(x)=(1-2x)*(2x-3),则f(x)等于(  )
A.$\left\{\begin{array}{l}1-{2}^{x},x≤1\\{2}^{x}-3,x>1\end{array}\right.$B.$\left\{\begin{array}{l}{{2}^{x}-3,x<1}\\{1-{2}^{x},x≥1}\end{array}\right.$
C.$\left\{\begin{array}{l}{{2}^{x}-4,x≥1}\\{2-{2}^{x},x<1}\end{array}\right.$D.$\left\{\begin{array}{l}{{4}^{x}-3,x<1}\\{1-{4}^{x},x≥1}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若1是方程x3+x2-ax+3=0的一个根,求方程的另两个根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=(2a+1)x+3a-1,当-1≤x≤3时,函数值y的最大值是2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x>0,函数f(x)=$\frac{{x}^{2}-3x+1}{x}$的最小值是-1.

查看答案和解析>>

同步练习册答案