精英家教网 > 高中数学 > 题目详情
定义在R上的可导函数y=f(x)在x=1处的切线方程是y=-x+2,则f(1)+f'(1)=(  )
A、-1
B、
1
2
C、2
D、0
分析:利用函数的切线方程与函数之间的关系是解决本题的关键,把握好函数在该点处的导数值就是在该点处切线的斜率,该点处的函数值就是切点的纵坐标.
解答:解:由于函数y=f(x)在x=1处的切线方程是y=-x+2,
故f(1)=(-1)×1+2=1,f′(1)=-1,故f(1)+f′(1)=0.
故选D.
点评:本题考查函数切线方程与函数导数之间的关系,考查根据切线方程求函数在该点处的函数值和导数值的问题,考查学生的等价转化思想和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、若函数y=f(x)是定义在R上的可导函数,则f′(x0)=0是x0为函数y=f(x)的极值点的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的可导函数f(x)满足f(-x)=f(x),f(x-2)=f(x+2),且当x∈[2,4]时,f(x)=x2+2xf(2),则f(-
1
2
)与f(
16
3
)的大小关系是(  )
A、f(-
1
2
)=f(
16
3
B、f(-
1
2
)<f(
16
3
C、f(-
1
2
)>f(
16
3
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)、g(x)是定义在R上的可导函数,且f(x)g(x)+f(x)g(x)<0,则当a<x<b时有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的可导函数y=f(x)对任意x∈R都有f(x)=f(-x),且当x≠0时,有x•f′(x)<0,现设a=f(-sin32°),b=f(cos32°),则实数a,b的大小关系是
a>b
a>b

查看答案和解析>>

同步练习册答案