分析 (1)求出函数的导数,解关于导函数的方程求出函数的单调区间,从而求出函数的极值即可;
(2)令F(x)=f(x)-g(x),通过讨论F(x)的单调性求出F(x)的最大值,结合题意求出a的范围即可.
解答 解:(1)函数f(x)的定义域为(0,+∞),
f′(x)=$\frac{1-(lnx+a)}{x2}$.
令f′(x)=0,得x=e1-a,
当x∈(0,e1-a)时,f′(x)>0,f(x)是增函数;…(2分)
当x∈(e1-a,+∞)时,f′(x)<0,f(x)是减函数.
所以函数f(x)的单调递增区间为(0,e1-a],
单调递减区间为[e1-a,+∞),…(3分)
极大值为f(x)极大值=f(e1-a)=ea-1,无极小值.…(4分)
(2)令F(x)=f(x)-g(x)=$\frac{lnx+a-1}{x}$,
则F′(x)=$\frac{-lnx+2-a}{x2}$.
令F′(x)=0,得x=e2-a;令F′(x)>0,得x<e2-a;
令F′(x)<0,得x>e2-a,
故函数F(x)在区间(0,e2-a]上是增函数,
在区间[e2-a,+∞)上是减函数.…(6分)
①当e2-a<e2,即a>0时,
函数F(x)在区间(0,e2-a]上是增函数,
在区间[e2-a,e2]上是减函数,F(x)max=F(e2-a)=ea-2.
又F(e1-a)=0,F(e2)=$\frac{a+1}{e2}$>0,
由图象,易知当0<x<e1-a时,F(x)<0;
当e1-a<x≤e2,F(x)>0,…(8分)
此时函数f(x)的图象与函数g(x)的图象在区间(0,e2]上有1个公共点.
②当e2-a≥e2,即a≤0时,F(x)在区间(0,e2]上是增函数,
F(x)max=F(e2)=$\frac{a+1}{e2}$.
若F(x)max=F(e2)=$\frac{a+1}{e2}$≥0,即-1≤a≤0时,…(10分)
函数f(x)的图象与函数g(x)的图象在区间(0,e2]上只有1个公共点;
若F(x)max=F(e2)=$\frac{a+1}{e2}$<0,即a<-1时,
函数f(x)的图象与函数g(x)的图象在区间(0,e2]上没有公共点.
综上,满足条件的实数a的取值范围是[-1,+∞).…(12分)
点评 本题考查了函数的单调性、极值问题,考查导数的应用,函数的交点问题以及分类讨论思想,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$+i | B. | 2i | C. | i | D. | $\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$ | B. | $\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ | C. | $\frac{1}{3}$$\overrightarrow{b}$+$\frac{2}{3}$$\overrightarrow{c}$ | D. | $\frac{1}{3}$$\overrightarrow{b}$+$\frac{4}{3}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${∫}_{0}^{5}$(2x2-4)dx | B. | ${∫}_{0}^{π}$$\frac{1}{2}$sinxdx | C. | ${∫}_{1}^{3}$$\frac{1}{x}$dx | D. | ${∫}_{0}^{\frac{π}{2}}$2cosxdx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com