精英家教网 > 高中数学 > 题目详情
13.若i为虚数单位,则$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$等于(  )
A.$\frac{\sqrt{3}}{2}$+iB.2iC.iD.$\frac{1}{2}$i

分析 直接由复数代数形式的乘除运算化简得答案.

解答 解:$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$=$\frac{(1+\sqrt{3}i)(\sqrt{3}+i)}{(\sqrt{3}-i)(\sqrt{3}+i)}=\frac{4i}{4}=i$,
故选:C.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足:|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$,且$\overrightarrow{c}$⊥$\overrightarrow{a}$.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角;
(2)求|3$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知{an}是各项都为正数的等比数列,其前n项和为Sn,且S2=3,S4=15.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}是等差数列,且b3=a3,b5=a5,试求数列{bn}的前n项和Mn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若圆x2+y2+2x-4y=0关于直线3x+y+m=0对称,则实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)是定义在R上的函数,且满足f(x+2)=-$\frac{1}{f(x)}$,当2≤x<4,f(x)=x,则f(2016)=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:?x∈R(x≠0),x+$\frac{1}{x}$≥2,则¬p为(  )
A.?x0∈R(x0≠0),x0+$\frac{1}{{x}_{0}}$≤2B.?x0∈R(x0≠0),x0+$\frac{1}{{x}_{0}}$<2
C.?x∈R(x≠0),x+$\frac{1}{x}$≤2D.?x∈R(x≠0),x+$\frac{1}{x}$<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式3x-4y+6<0表示的平面区域在直线3x-4y+6=0的(  )
A.右上方B.右下方C.左上方D.左下方

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某高级中学共有学生4000名,各年级男、女生人数如表:
高一年级高二年级高三年级
女生xy642
男生680z658
已知在全校学生中随机抽取1名,抽到高一年级女生的概率是0.15.
(1)求高一女生人数x和高二学生总数;
(2)现用分层抽样的方法在全校抽取200名学生,问应在高二年级抽取多少名?
(3)已知y≥705,z≥705,求高二年级中男生比女生多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{lnx+a}{x}$(a∈R),g(x)=$\frac{1}{x}$.
(1)求f(x)的单调区间与极值;
(2)若函数f(x)的图象与函数g(x)的图象在区间(0,e2]上有公共点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案