分析 (1)由$\overrightarrow{c}⊥\overrightarrow{a}$便可得到$\overrightarrow{c}•\overrightarrow{a}=0$,带入$\overrightarrow{c}=\overrightarrow{a}+\overrightarrow{b}$,便可由条件求出$cos<\overrightarrow{a},\overrightarrow{b}>$的值,从而得出向量$\overrightarrow{a},\overrightarrow{b}$的夹角;
(2)根据上面可得到$\overrightarrow{a}•\overrightarrow{b}=-1$,从可以求出$|3\overrightarrow{a}+\overrightarrow{b}{|}^{2}$的值,进而得出$|3\overrightarrow{a}+\overrightarrow{b}|$的值.
解答 解:(1)∵$\overrightarrow{c}⊥\overrightarrow{a}$;
∴由条件,$\overrightarrow{c}•\overrightarrow{a}=(\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{a}$
=${\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow{b}$
=$1+2cos<\overrightarrow{a},\overrightarrow{b}>$
=0;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=-\frac{1}{2}$;
∴$\overrightarrow{a},\overrightarrow{b}$的夹角为$\frac{2π}{3}$;
(2)由上面$\overrightarrow{a}•\overrightarrow{b}=-1$;
∴$|3\overrightarrow{a}+\overrightarrow{b}{|}^{2}=9{\overrightarrow{a}}^{2}+6\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$
=9-6+4
=7;
∴$|3\overrightarrow{a}+\overrightarrow{b}|=\sqrt{7}$.
点评 考查向量垂直的充要条件,向量的数量积运算及计算公式,以及要求$|3\overrightarrow{a}+\overrightarrow{b}|$而求$|3\overrightarrow{a}+\overrightarrow{b}{|}^{2}$的方法.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{33}$ | B. | $\frac{13}{36}$ | C. | $\frac{13}{23}$ | D. | $\frac{23}{33}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2f(x)≥0 | B. | x2f(x)≤0 | C. | x2[f(x)-1]≥0 | D. | x2[f(x)-1]≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (4,8) | B. | [4,9) | C. | (-∞,4] | D. | (-∞,9) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$+i | B. | 2i | C. | i | D. | $\frac{1}{2}$i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com