分析 由已知及一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系可得b+c=4,bc=m,分类讨论,求出bc的值,分别利用直角三角形的面积公式即可计算得解.
解答 解:∵直角△ABC的一边长a=2,另两边长b,c是关于x的方程x2-4x+m=0的两个根,
∴b+c=4,bc=m,
①若a为三角形的斜边,则:b2+c2=4,联立b+c=4,解得:bc=3,
可得:m=bc=3,S△ABC=$\frac{1}{2}$bc=$\frac{3}{2}$.
②若a为三角形的一直角边,不妨设b为斜边,则:b2=4+c2,联立b+c=4,解得:c=$\frac{3}{2}$,b=$\frac{5}{2}$,
可得:m=bc=$\frac{15}{4}$,S△ABC=$\frac{1}{2}$bc=$\frac{15}{8}$.
点评 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个根为x1,x2,则x1+x2=-$\frac{b}{a}$,x1•x2=$\frac{c}{a}$.也考查了一元二次方程的解的定义,三角形三边关系和直角三角形的性质,考查了分类讨论思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 64个 | B. | 72个 | C. | 84个 | D. | 96个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 患病 | 未患病 | 总计 | |
| 没服用药 | 22 | y | 60 |
| 服用药 | x | 50 | 60 |
| 总计 | 32 | t | 120 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” | |
| B. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” | |
| C. | 有99%以上的把握认为“爱好该项运动与性别有关” | |
| D. | 有99%以上的把握认为“爱好该项运动与性别无关” |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com