精英家教网 > 高中数学 > 题目详情
7.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:
总计
爱好402060
不爱好203050
总计6050110
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$,其中n=a+b+c+d
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

分析 根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.

解答 解:由题意知本题所给的观测值,X2=$\frac{110×(40×30-20×20)^{2}}{60×50×60×50}$≈7.8
∵7.8>6.635,
∴这个结论有0.010的机会说错,
即有99%的把握认为“爱好该项运动与性别有关.
故选:C.

点评 本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.从集合{1,2,3,4}中随机取出两个不同的元素,它们的和为奇数的概率是(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知各项均不为0的数列{an}满足a1=a,a2=b,且an2=an-1an+1+λ(n≥2,n∈N),其中λ∈R.
(1)若λ=0,求证:数列{an}是等比数列;
(2)求证:数列{an}是等差数列的充要条件是λ=(b-a)2
(3)若数列{bn}为各项均为正数的等比数列,且对任意的n∈N*,满足bn-an=1,求证:数列{(-1)nanbn}的前2n项和为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直角△ABC的一边长a=2,另两边长b,c是关于x的方程x2-4x+m=0的两个根,求m的值和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某展览馆用同种规格的木条制作如图所示的展示框,其内框与外框均为矩形,并用木条相互连结,连结木条与所连框边均垂直.水平方向的连结木条长均为8cm,竖直方向的连结木条长均为4cm,内框矩形的面积为3200cm2.(不计木料的粗细与接头处损耗)
(1)如何设计外框的长与宽,才能使外框矩形面积最小?
(2)如何设计外框的长与宽,才能使制作整个展示框所用木条最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2lnx-$\frac{1}{2}$mx2-(1-2m)x,m∈R.
(Ⅰ)若函数f(x)的图象在x=1处的切线过点(2,-1),求实数m的值;
(Ⅱ)当m>-$\frac{1}{2}$时,讨论函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设F1和F2是双曲线$\frac{{x}^{2}}{4}$-y2=1的两个焦点,点P在双曲线右支上,且满足∠F1PF2=90°,求△F1PF2的面积为S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,执行如图所示的程序框图,输出的S值为(  )
A.1-iB.1+iC.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各组向量中能作为表示它们所在平面内的所有向量的基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(6,4)C.$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(5,7)D.$\overrightarrow{a}$=(-3,-1),$\overrightarrow{b}$=(3,1)

查看答案和解析>>

同步练习册答案