| A. | $\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2) | B. | $\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(6,4) | C. | $\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(5,7) | D. | $\overrightarrow{a}$=(-3,-1),$\overrightarrow{b}$=(3,1) |
分析 可知,两个向量不共线时便可作为基底,这样判断每个选项的两个向量是否共线即可.
解答 解:根据基底的概念,只要两个向量不共线即可作为基底;
A.$\overrightarrow{a}=0\overrightarrow{b}$,∴向量$\overrightarrow{a},\overrightarrow{b}$共线;
B.$\overrightarrow{b}=2\overrightarrow{a}$,∴向量$\overrightarrow{a},\overrightarrow{b}$共线;
C.-1×7+2×5=3≠0,∴向量$\overrightarrow{a},\overrightarrow{b}$不共线;
D.$\overrightarrow{b}=-\overrightarrow{a}$,∴$\overrightarrow{a},\overrightarrow{b}$共线;
故选C.
点评 考查基底的概念,共线向量基本定理,以及向量坐标的数乘运算,以及根据向量坐标判断向量是否共线的方法.
科目:高中数学 来源: 题型:选择题
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” | |
| B. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” | |
| C. | 有99%以上的把握认为“爱好该项运动与性别有关” | |
| D. | 有99%以上的把握认为“爱好该项运动与性别无关” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A${\;}_{10}^{6}$ | B. | A${\;}_{10}^{7}$ | C. | C${\;}_{10}^{6}$ | D. | C${\;}_{10}^{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com