精英家教网 > 高中数学 > 题目详情
已知f(x)=
x2
1+x2
,那么f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+f(4)+f(
1
4
)+f(5)+f(
1
5
)=(  )
分析:由已知可得,f(x)+f(
1
x
)=
x2
1+x2
+
1
x2
1+
1
x2
=
x2
1+x2
+
1
1+x2
=1,代入即可求解
解答:解:∵f(x)=
x2
1+x2

∴f(x)+f(
1
x
)=
x2
1+x2
+
1
x2
1+
1
x2
=
x2
1+x2
+
1
1+x2
=1
∴f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+f(4)+f(
1
4
)+f(5)+f(
1
5

=
1
2
+1×4
=
9
2

故选D
点评:本题主要考查了函数 值的求解,解题的关键是发现f(x)+f(
1
x
)=1的规律,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
x2
1+x2
,那么f(1)+f(2)+f(
1
2
)=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1-x21+x2
(x≠0,x≠±1,x∈R)
的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性并用定义证明;
(3)解不等式f(3x+1)>f(5x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1+x2
1-x2
,则f(x)不满足的关系是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数g(x)=
1-x2
1+x2
(x≠0,x≠±1,x∈R)
的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性并用定义证明;
(3)解不等式f(3x+1)>f(5x+1).

查看答案和解析>>

同步练习册答案