【题目】如图,在斜三棱柱
中,平面
平面
,
,
,
,均为正三角形,E为AB的中点.
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)求斜三棱柱
截去三棱锥
后剩余部分的体积.
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,点
是线段
上的动点,则下列说法正确的是( )
![]()
A.无论点
在
上怎么移动,都有![]()
B.当点
移动至
中点时,才有
与
相交于一点,记为点
,且![]()
C.无论点
在
上怎么移动,异面直线
与
所成角都不可能是![]()
D.当点
移动至
中点时,直线
与平面
所成角最大且为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
在
处有极值,且
,则称
为函数
的“F点”.
(1)设函数
(
).
①当
时,求函数
的极值;
②若函数
存在“F点”,求k的值;
(2)已知函数
(a,b,
,
)存在两个不相等的“F点”
,
,且
,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱锥P-ABC中,平面PAB⊥平面ABC,△ABC是边长为
的等边三角形,
,点O,M分别是AB,BC的中点.
![]()
(1)证明:AC//平面POM;
(2)求点B到平面POM的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计得频率分布直方图如图所示.
![]()
(1)经计算估计这组数据的中位数;
(2)现按分层抽样从质量为
,
的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在
内的概率.
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某鲜花店根据以往某品种鲜花的销售记录,绘制出日销售量的频率分布直方图,如图所示.将日销售量落入各组区间的频率视为概率,且假设每天的销售量相互独立.
![]()
(1)求在未来的连续4天中,有2天的日销售量低于100枝且另外2天不低于150枝的概率;
(2)用
表示在未来4天里日销售量不低于100枝的天数,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照
,
,
,
,
分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.
|
|
(1)根据已知条件完成下面
列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为
,若每次抽取的结果是相互独立的,求
的分布列、期望
和方差
.
参考公式:
,其中
.
参考临界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是边长为
的菱形,
,
,
为
的中点,
为
的中点,点
在线段
上,且
.
![]()
(1)求证:
平面
;
(2)若平面
底面ABCD,且
,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(导学号:05856310)
已知函数f(x)=x+
+ln x(a∈R).
(Ⅰ)当a=2时, 求函数f(x)的单调区间;
(Ⅱ)若关于x的函数g(x)=
-f(x)+ln x+2e(e为自然对数的底数)有且只有一个零点,求实数a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com