精英家教网 > 高中数学 > 题目详情
12.在某项测量中,测量的结果ξ 服从正态分布N(a,δ 2)(a>0,δ>0),若ξ 在(0,a)内取值的概率为0.3,则ξ 在(0,2a)内取值的概率为(  )
A.0.8B.0.6C.0.4D.0.3

分析 根据变量符合正态分布和ξ在(0,a)内取值的概率为0.3,由正态分布的对称性可知ξ在(a,2a)内的取值概率也为0.3,根据互斥事件的概率得到要求的区间上的概率.

解答 解:∵ξ服从正态分布N(a,δ 2)(a>0,δ>0),若ξ 在(0,a)内取值的概率为0.3,
由正态分布的对称性可知ξ在(a,2a)内的取值概率也为0.3,
∴ξ 在(0,2a)内取值的概率为0.3+0.3=0.6
故选:B.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的基本性质,考查互斥事件的概率公式,本题是一个基础题,运算量不大,不易出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≥a}\\{a{x}^{2},x<a}\end{array}\right.$,若存在实数b,使函数y=f(x)-b有且只有2个零点,则实数b的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在实数集R上的函数f(x)的导函数是f′(x),下列命题中:
①当xf′(x)-f′(x)>0时,函数f(x)存在最小值;
②当xf′(x)+f(x)>0时,函数f(x)在R上单调递增;
③当f′(x)-f(x)>0时,ef(n)<f(n+1),n∈N*
④当f(1)=4,且f′(x)<3时,不等式f(lnx)>3lnx+1的解集为(0,e)
所有正确的命题是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x.
(1)求f(x)的最小周期和最小值;
(2)当x∈[$\frac{π}{2},π}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有10种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中,正确的是(  )
A.有两个侧面是矩形的棱柱是直棱柱
B.侧面都是等腰三角形的棱锥是正棱锥
C.侧面都是矩形的直四棱柱是长方体
D.底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若将函数y=cos 2x的图象向左平移$\frac{π}{12}$个单位长度,则平移后图象的对称轴为(  )
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果实数a,b满足:a<b<0,则下列不等式中不成立的是(  )
A.|a|>|b|B.$\frac{1}{a-b}>\frac{1}{a}$C.$\frac{1}{b}<\frac{1}{a}$D.b2-a2<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.能够把圆x2+y2=R2的周长和面积同时平分为相等的两部分的函数称为该圆的“和谐函数”,下列函数不是圆x2+y2=4的“和谐函数”的是(  )
A.f(x)=2x+$\frac{1}{{2}^{x}}$B.f(x)=tan$\frac{x}{2}$C.f(x)=x3+xD.f(x)=ln$\frac{4-x}{4+x}$

查看答案和解析>>

同步练习册答案