精英家教网 > 高中数学 > 题目详情
7.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有10种(用数字作答).

分析 根据题意,可得1号盒子至少放一个,最多放2个小球,即分两种情况讨论,分别求出其不同的放球方法数目,相加可得答案.

解答 解:根据题意,每个盒子里的球的个数不小于该盒子的编号,
分析可得,可得1号盒子至少放一个,最多放2个小球,分情况讨论:
①1号盒子中放1个球,其余3个放入2号盒子,有C41=4种方法;
②1号盒子中放2个球,其余2个放入2号盒子,有C42=6种方法;
则不同的放球方法有10种,
故答案为:10.

点评 本题考查组合数的运用,注意挖掘题目中的隐含条件,全面考虑.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.锐角三角形△ABC满足b2-a2=ac,则$\frac{1}{tanA}-\frac{1}{tanB}$的取值范围为$(1,\frac{{2\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆E的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,取相同单位长度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直线l过原点,且它的倾斜角α=$\frac{3π}{4}$,求l与圆E的交点A的极坐标(点A不是坐标原点);
(2)直线m过线段OA中点M,且直线m交圆E于B、C两点,求||MB|-|MC||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)是定义在R上的奇函数,且f(x+2)=-f(x)恒成立,当x∈(0,2]时,f(x)=2x+log2x,则f(2015)=(  )
A.-2B.$\frac{1}{2}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a,b是函数f(x)=x2-mx+n(m>0,n>0)的两个不同的零点,且a,b,-4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则m+n=26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在某项测量中,测量的结果ξ 服从正态分布N(a,δ 2)(a>0,δ>0),若ξ 在(0,a)内取值的概率为0.3,则ξ 在(0,2a)内取值的概率为(  )
A.0.8B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知|$\overrightarrow a}$|=|${\overrightarrow b}$|=|${\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.两个平面互相垂直,下列说法中正确的是(  )
A.一个平面内的任一条直线必垂直于另一个平面
B.分别在这两个平面内且互相垂直的两直线,一定分别与另一平面垂直
C.过其中一个平面内一点作与它们交线垂直的直线,必垂直于另一个平面
D.一个平面内的已知直线必垂直于另一个平面内的无数条直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知全集U=R,集合A={x|(x-1)(x+3)≥0},集合B={x|($\frac{1}{3}$)x<9},则(∁UA)∪B=(  )
A.(-2,1)B.(-3,+∞)C.(-∞,-3)∪(-2,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案