分析 (1)推导出CE⊥AD,CE⊥BD,由此能证明平面ACE⊥平面ABD.
(2)以C为原点,CB为x轴,CD为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角C-AB-D的正切值.
解答 证明:(1)∵AD⊥平面BCD,CE?平面BCD,![]()
∴CE⊥AD,
∵CB=CD,E是BD的中点,∴CE⊥BD,
∵AD∩BD=D,∴CE⊥平面ABD,
∵CE?平面ACE,∴平面ACE⊥平面ABD.
解:(2)∵CD=$\sqrt{2}$,AD=3,CB⊥CD,CB=CD,AD⊥平面BCD,
∴以C为原点,CB为x轴,CD为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,
C(0,0,0),B($\sqrt{2}$,0,0),
A(0,$\sqrt{2}$,3),D(0,$\sqrt{2}$,0),
$\overrightarrow{CB}$=($\sqrt{2}$,0,0),$\overrightarrow{CD}$=(0,$\sqrt{2}$,0),$\overrightarrow{AB}$=($\sqrt{2}$,-$\sqrt{2}$,-3),$\overrightarrow{AD}$=(0,0,-3),
设平面ABC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=\sqrt{2}x-\sqrt{2}y-3z=0}\\{\overrightarrow{n}•\overrightarrow{CB}=\sqrt{2}x=0}\end{array}\right.$,取y=3$\sqrt{2}$,得$\overrightarrow{n}$=(0,3$\sqrt{2}$,-2),
设平面ABD的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=\sqrt{2}x-\sqrt{2}y-3z=0}\\{\overrightarrow{m}•\overrightarrow{AD}=-3z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,1,0),
设二面角C-AB-D的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{2}}{\sqrt{22}•\sqrt{2}}$=$\frac{3}{\sqrt{22}}$,sinθ=$\sqrt{1-(\frac{3}{\sqrt{22}})^{2}}$=$\frac{\sqrt{13}}{\sqrt{22}}$,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{\sqrt{13}}{3}$.
∴二面角C-AB-D的正切值为$\frac{\sqrt{13}}{3}$.
点评 本题考查面面垂直的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{4e}$,$\frac{1}{e}$) | B. | ($\frac{1}{4e}$,$\frac{1}{2e}$] | C. | [$\frac{1}{e^2}$,$\frac{1}{e}$) | D. | [$\frac{1}{e^2}$,$\frac{1}{2e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 手机系统 | 一 | 二 | 三 | 四 | 五 |
| 安卓系统(元) | 2 | 5 | 3 | 20 | 9 |
| IOS系统(元) | 4 | 3 | 18 | 9 | 7 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
| A. | 0.1% | B. | 1% | C. | 99% | D. | 99.9% |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com