精英家教网 > 高中数学 > 题目详情
10.在正方体AC1中.
(1)平面A1ADD1与平面ABCD所成的二面角的度数;
(2)平面ABC1D1与平面ABCD所成的二面角的度数.

分析 (1)推导出AA1⊥底面ABCD,从而平面A1ADD1⊥平面ABCD,由此能求出平面A1ADD1与平面ABCD所成的二面角的大小.
(2)推导出AB⊥BC,AB⊥BC1,从而∠CBC1是平面ABC1D1与平面ABCD所成的二面角的平面角,由此能求出平面ABC1D1与平面ABCD所成的二面角的度数.

解答 解:(1)∵在正方体AC1中,AA1⊥AD,AA1⊥AB,AD∩AB=A,
∴AA1⊥底面ABCD,
∵AA1?A1ADD1,∴平面A1ADD1⊥平面ABCD,
∴平面A1ADD1与平面ABCD所成的二面角为90°.
(2)∵在正方体AC1中,AB⊥平面BCC1B1
∴AB⊥BC,AB⊥BC1
∴∠CBC1是平面ABC1D1与平面ABCD所成的二面角的平面角,
∵BC=CC1,BC⊥CC1
∴∠CBC1=45°,
∴平面ABC1D1与平面ABCD所成的二面角的度数为45°.

点评 本题考查二面角的求法,是基础题,解题时要认真审题,注意正方体结构特征的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知曲线C的极坐标方程为ρ=2cosθ.直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C和直线l的普通方程方程;
(2)设曲线C和直线l相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,其中正视图是圆心角为270°的扇形,俯视图与侧视图中圆的半径为2,则这个几何体的表面积是(  )
A.16πB.14πC.12πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|-9<x<6},集合B={x|x2-3ax+2a2=0,x∈R},且B⊆A,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥底面ABCD,二面角A-PB-C为90°,PA=AB=2BC.
(1)求证:底面ABCD为矩形;
(2)求二面角A-PC-D的余弦值;
(3)求BC与平面PBD所成角的正弦值;
(4)若BC=1,设M为棱CD的中点,求M到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在正方体ABCD-A1B1C1D1中,E,F,M,N分别是A1B1,BC,C1D1和B1C1的中点.
(1)求证:平面MNF⊥平面NEF;
(2)求二面角M-EF-N的平面角正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四面体ABCD中,CB=CD,AD⊥平面BCD,且E是BD的中点,求证:
(1)平面ACE⊥平面ABD;
(2)若CD=$\sqrt{2}$,AD=3,CB⊥CD,求二面角C-AB-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$bx2+x,连续抛掷两颗骰子得到的点数分别是a,b,则函数f′(x)在x=1处取得最值的概率是(  )
A.$\frac{1}{36}$B.$\frac{1}{18}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了调查某地区成年人血液的一项指标,现随机抽取了成年男性、女性各10人组成的一个样本,对他们的这项血液指标进行了检测,得到了如下茎叶图.根据医学知识,我们认为此项指标大于40为偏高,反之即为正常.
(Ⅰ)依据上述样本数据研究此项血液指标与性别的关系,完成下列2×2列联表,并判断能否在犯错误的概率不超过0.10的前提下认为此项血液指标与性别有关系?
正常偏高合计
男性
女性
合计
(Ⅱ)现从该样本中此项血液指标偏高的人中随机抽取2人去做其它检测,求恰好有一名男性和一名女性被抽到的概率.
参考数据:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案