精英家教网 > 高中数学 > 题目详情
19.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知曲线C的极坐标方程为ρ=2cosθ.直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C和直线l的普通方程方程;
(2)设曲线C和直线l相交于A,B两点,求弦长|AB|.

分析 (1)曲线C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐标方程.直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),消去参数可得普通方程.
(2)利用点到直线的距离公式可得:圆心C到直线l的距离d.利用|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$即可得出弦长.

解答 解:(1)曲线C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,
利用互化公式可得直角坐标方程:x2+y2=2x,配方为:(x-1)2+y2=1,可得圆心C(1,0),半径r=1.
直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),消去参数可得普通方程:x-y-2=0.
(2)圆心C到直线l的距离d=$\frac{|1-0-2|}{\sqrt{2}}$=$\frac{1}{\sqrt{2}}$.
∴|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{1-(\frac{1}{\sqrt{2}})^{2}}$=$\sqrt{2}$.

点评 本题考查了参数方程与普通方程的互化、极坐标方程化为直角坐标方程、点到直线的距离公式、直线与圆相交弦长公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在△ABC中,a=$\sqrt{3}$,b=1,A=60°,则△ABC的面积为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是求x1,x2…x10的乘积S的程序框图,图中空白框中应填入的内容为(  )
A.S=S×(n+1)B.S=S×xn+1C.S=S×nD.S=S×xn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若定义在[0,+∞)上的函数f(x)满足:当0≤x<2时,f(x)=$\sqrt{1-{{(x-1)}^2}}$,当2k-2≤x<2k+1-2(k∈N*)时,f(x)=2f($\frac{x-2}{2}$),则函数F(x)=|${\frac{lnx}{x}}$|-f(x)在区间(0,2016)的零点个数为19.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x|+|x-1|.
(Ⅰ)若f(x)≥|m-1|恒成立,求实数m的最大值M;
(Ⅱ)在(Ⅰ)成立的条件下,正实数m,n,p满足m+n+p=$\frac{3}{2}$M,求证:mn+np+pm≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(1)当x∈R时.y=|x-1|+|x+2|的最小值为3
(2)当x∈R时,y=|x-1|-|x+2|的最小值为-3,最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,点E为BC中点,点F为B1C1中点.
(Ⅰ)求证:平面A1ED⊥平面A1AEF;
(Ⅱ)求三棱锥F-A1ED与F-A1D1D的体积之比;
(Ⅲ)求直线AD与平面A1ED所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足x2+4y2=1,则xy•(1-4xy)的最小值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在正方体AC1中.
(1)平面A1ADD1与平面ABCD所成的二面角的度数;
(2)平面ABC1D1与平面ABCD所成的二面角的度数.

查看答案和解析>>

同步练习册答案