分析 (Ⅰ)利用零点分段法去掉绝对值符号,转化为不等式组,得出f(x)min=1,由题意知,只需|m-1|≤1,解出m的范围,即可求实数m的最大值M;
(Ⅱ)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,将条件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可证得.
解答 (Ⅰ)解:由已知可得$f(x)=\left\{\begin{array}{l}1-2x,x<0\\ 1,0≤x<1\\ 2x-1,x≥1\end{array}\right.$,所以f(x)min=1,
由题意知,只需|m-1|≤1,解得-1≤m-1≤1,∴0≤m≤2,.
所以实数m的最大值M=2.
(Ⅱ)证明:∵m+n+p=$\frac{3}{2}$M=3,
∴(m+n+p)2=m2+n2+p2+2mn+2np+2mp=9,
∵m,n,p正实数,
∴m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,
∴由均值不等式,得m2+n2+p2≥mn+np+mp(当且仅当m=n=p时取等号),
∴(m+n+p)2=m2+n2+p2+2mn+2np+2mp=9≥3mn+3np+3mp,
∴mn+np+pm≤3(当且仅当m=n=p时取等号).
点评 本题主要考查绝对值不等式的解法、基本不等式等基础知识,考查学生的转化能力和计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | m≥$\frac{1}{2}$ | B. | m≥2 | C. | 0<m<$\frac{1}{2}$ | D. | 0<m≤$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 休闲方式 性别 | 逛街 | 上网 | 合计 |
| 男 | 10 | 50 | 60 |
| 女 | 10 | 10 | 20 |
| 合计 | 20 | 60 | 80 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{24}{25}$ | B. | -$\frac{5}{13}$ | C. | $\frac{5}{13}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com