精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=|x|+|x-1|.
(Ⅰ)若f(x)≥|m-1|恒成立,求实数m的最大值M;
(Ⅱ)在(Ⅰ)成立的条件下,正实数m,n,p满足m+n+p=$\frac{3}{2}$M,求证:mn+np+pm≤3.

分析 (Ⅰ)利用零点分段法去掉绝对值符号,转化为不等式组,得出f(x)min=1,由题意知,只需|m-1|≤1,解出m的范围,即可求实数m的最大值M;
(Ⅱ)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,将条件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可证得.

解答 (Ⅰ)解:由已知可得$f(x)=\left\{\begin{array}{l}1-2x,x<0\\ 1,0≤x<1\\ 2x-1,x≥1\end{array}\right.$,所以f(x)min=1,
由题意知,只需|m-1|≤1,解得-1≤m-1≤1,∴0≤m≤2,.
所以实数m的最大值M=2.
(Ⅱ)证明:∵m+n+p=$\frac{3}{2}$M=3,
∴(m+n+p)2=m2+n2+p2+2mn+2np+2mp=9,
∵m,n,p正实数,
∴m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,
∴由均值不等式,得m2+n2+p2≥mn+np+mp(当且仅当m=n=p时取等号),
∴(m+n+p)2=m2+n2+p2+2mn+2np+2mp=9≥3mn+3np+3mp,
∴mn+np+pm≤3(当且仅当m=n=p时取等号).

点评 本题主要考查绝对值不等式的解法、基本不等式等基础知识,考查学生的转化能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=m•9x-3x,若存在非零实数x0,使得f(-x0)=f(x0)成立,则实数m的取值范围是(  )
A.m≥$\frac{1}{2}$B.m≥2C.0<m<$\frac{1}{2}$D.0<m≤$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.第五届全国绿色运动健身大赛于2015年10月24日在安徽池州开赛.据了解,本届绿运健身大赛以“绿色池州、绿色运动、绿色生活”为主题.
为调查某社区年轻人的周末生活状况,研究这一社区年轻人在周末的休闲方式与性别的关系,随机调查了该社区年轻人80人,得到下面的数据表:
        休闲方式
性别
 逛街上网  合计
 男 10 50 60
 女 10 10 20
 合计 20  6080 
(1)根据以上数据,能否有99%的把握认为“周末年轻人的休闲方式与性别有关系”?
(2)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男生,设调查的3人在这一段时间以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
 P(K2≥k0 0.150.10  0.050.025  0.010
 k02.072  2.7063.841  5.0246.635 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,D为BC的中点.则直线DB1与平面A1C1D所成角的正弦值$\frac{4}{15}\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=|x-1|+$\frac{|x-2|}{2}$+$\frac{|x-3|}{3}$(x∈R),则f(x)的最小值是$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知曲线C的极坐标方程为ρ=2cosθ.直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C和直线l的普通方程方程;
(2)设曲线C和直线l相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果关于x的不等式|x+1|+|x-2|>a恒成立,只须a满足a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知角α始边与x轴正半轴重合,终边过直线ax+y+a+3=0与圆x2+y2=1的切点,则sin2α等于(  )
A.-$\frac{24}{25}$B.-$\frac{5}{13}$C.$\frac{5}{13}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥底面ABCD,二面角A-PB-C为90°,PA=AB=2BC.
(1)求证:底面ABCD为矩形;
(2)求二面角A-PC-D的余弦值;
(3)求BC与平面PBD所成角的正弦值;
(4)若BC=1,设M为棱CD的中点,求M到平面PBD的距离.

查看答案和解析>>

同步练习册答案