精英家教网 > 高中数学 > 题目详情
4.(1)当x∈R时.y=|x-1|+|x+2|的最小值为3
(2)当x∈R时,y=|x-1|-|x+2|的最小值为-3,最大值为3.

分析 (1)当x∈R时.y=|x-1|+|x+2|≥|x-1-x-2|=3,可得y=|x-1|+|x+2|的最小值;
(2)由||x-1|-|x+2||≤|x-1-x-2|=3,可得-3≤|x-1|-|x+2|≤3,即可得出当x∈R时,y=|x-1|-|x+2|的最小值与最大值.

解答 解:(1)当x∈R时.y=|x-1|+|x+2|≥|x-1-x-2|=3,
∴y=|x-1|+|x+2|的最小值为3;
(2)∵||x-1|-|x+2||≤|x-1-x-2|=3,
∴-3≤|x-1|-|x+2|≤3,
∴当x∈R时,y=|x-1|-|x+2|的最小值为-3,最大值为3.
故答案为:(1)3;(2)-3,3.

点评 本题考查函数的最值,考查绝对值三角不等式的运用,正确运用绝对值三角不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.命题“?x0∈R,$\sqrt{{3^{x_0}}+1}$≤1”的否定为(  )
A.?x0∈R,$\sqrt{{3^{x_0}}+1}$>1B.?x0∈R,$\sqrt{{3^{x_0}}+1}$≥1C.?x∈R,$\sqrt{{3^{x_0}}+1}$>1D.?x∈R,$\sqrt{{3^{x_0}}+1}$<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}x=\sqrt{3}+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4.
(Ⅰ)求出曲线C2的直角坐标方程;
(Ⅱ)若C1与C2相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:CE∥平面PAD;
(2)若二面角P-AC-E的余弦值为$\frac{\sqrt{3}}{3}$,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知曲线C的极坐标方程为ρ=2cosθ.直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C和直线l的普通方程方程;
(2)设曲线C和直线l相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x+1|-|x-2|.
(1)求不等式f(x)>0的解集;
(2)若不等式|m+1|≥f(x)+3|x-2|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在($\sqrt{{x}^{3}}$-$\frac{2}{x}$)n的展开式中,第5项的系数与第3项的系数之比是14:1
(1)求展开式中x6的系数;
(2)求展开式中系数绝对值最大的项;
(3)求n+9C${\;}_{n}^{2}$+81C${\;}_{n}^{3}$+…+9n-1C${\;}_{n}^{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,a=7,b=8,A=$\frac{π}{3}$,则边c=3或5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在正方体ABCD-A1B1C1D1中,E,F,M,N分别是A1B1,BC,C1D1和B1C1的中点.
(1)求证:平面MNF⊥平面NEF;
(2)求二面角M-EF-N的平面角正切值.

查看答案和解析>>

同步练习册答案