精英家教网 > 高中数学 > 题目详情
7.命题“?x0∈R,$\sqrt{{3^{x_0}}+1}$≤1”的否定为(  )
A.?x0∈R,$\sqrt{{3^{x_0}}+1}$>1B.?x0∈R,$\sqrt{{3^{x_0}}+1}$≥1C.?x∈R,$\sqrt{{3^{x_0}}+1}$>1D.?x∈R,$\sqrt{{3^{x_0}}+1}$<1

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题.
所以命题“?x0∈R,$\sqrt{{3^{x_0}}+1}$≤1”的否定为?x∈R,$\sqrt{{3^{x_0}}+1}$>1.
故选:C.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若运行如图所示程序框图,则输出结果S的值为(  )
A.$\frac{3}{7}$B.$\frac{4}{9}$C.$\frac{9}{20}$D.$\frac{5}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.向量的运算常常与实数运算进行类比,下列类比推理中结论正确的是(  )
A.“若ac=bc(c≠0),则a=b”类比推出“若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$($\overrightarrow{c}$≠$\overrightarrow{0}$),则$\overrightarrow{a}$=$\overrightarrow{b}$”
B.“在实数中有(a+b)c=ac+bc”类比推出“在向量中($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$”
C.“在实数中有(ab)c=a(bc)”类比推出“在向量中($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)”
D.“若ab=0,则a=0或b=0”类比推出“若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=blnx.
(1)当b=1时,求G(x)=x2-x-f(x)在区间[${\frac{1}{2}$,e]上的最值;
(2)若存在一点x0∈[1,e],使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,a=$\sqrt{3}$,b=1,A=60°,则△ABC的面积为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,圆M与圆N交于A、B两点,以A为切点作两圆的切线分别交圆M和圆N于C,D两点,延长DB交圆M于点E,延长CB交圆N于点F.
(1)求证:△ABC~△DBA;
(2)求证:CF=DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,AB=BC=2,AA1=2$\sqrt{3}$,CB⊥AB,D为线段A1B上一点,且A1D=3,P为AA1的中点.
(1)求证:AD⊥A1C;
(2)求二面角P-BC-A1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=ex(x2+ax+b)有极值点x1,x2(x1<x2),且f(x1)=x1,则关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根个数为(  )
A.0B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(1)当x∈R时.y=|x-1|+|x+2|的最小值为3
(2)当x∈R时,y=|x-1|-|x+2|的最小值为-3,最大值为3.

查看答案和解析>>

同步练习册答案