分析 (I)曲线C2:ρ=4,利用互化公式可得直角坐标方程.
(II)把曲线C1的参数代入圆的方程可得:t2+3$\sqrt{3}$t-9=0,利用根与系数的关系及其|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,即可得出.
解答 解:(I)曲线C2:ρ=4,可得直角坐标方程:x2+y2=16.
(II)把曲线C1:$\left\{\begin{array}{l}x=\sqrt{3}+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),代入圆的方程可得:t2+3$\sqrt{3}$t-9=0,
∴t1+t2=$-3\sqrt{3}$,t1t2=-9,
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(3\sqrt{3})^{2}-4×(-9)}$=3$\sqrt{7}$.
点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与圆相交弦长公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | “若ac=bc(c≠0),则a=b”类比推出“若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$($\overrightarrow{c}$≠$\overrightarrow{0}$),则$\overrightarrow{a}$=$\overrightarrow{b}$” | |
| B. | “在实数中有(a+b)c=ac+bc”类比推出“在向量中($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$” | |
| C. | “在实数中有(ab)c=a(bc)”类比推出“在向量中($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)” | |
| D. | “若ab=0,则a=0或b=0”类比推出“若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S=S×(n+1) | B. | S=S×xn+1 | C. | S=S×n | D. | S=S×xn |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com