精英家教网 > 高中数学 > 题目详情
10.如图是求x1,x2…x10的乘积S的程序框图,图中空白框中应填入的内容为(  )
A.S=S×(n+1)B.S=S×xn+1C.S=S×nD.S=S×xn

分析 由题目要求可知:该程序的作用是求求x1,x2,…,x10的乘积,循环体的功能是累加各样本的值,故应为:S=S*xn

解答 解:由题目要求可知:该程序的作用是求求x1,x2,…,x10的乘积,
结合流程图可得,
循环体的功能是累乘各样本的值,
故应为:S=S*xn
故选:D.

点评 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知x、y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≤0\\{({x-2})^2}+{y^2}≤4\end{array}\right.$,则z=-$\frac{{\sqrt{3}}}{3}$x+y的范围为$[{-2\sqrt{3},2-\frac{{2\sqrt{3}}}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知锐二面角α-l-β,A∈l,C∉l,C∈α,且AC⊥l,B∈l,D∉l,D∈β,BD⊥l.若$\overrightarrow{AC}$=(-2,1,-1),$\overrightarrow{BD}$=(-1,-1,-2),则二面角α-l-β的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花.若BC=a,∠ABC=θ,设△ABC的面积为S1,正方形PQRS的面积为S2
(1)用a,θ表示S1和S2
(2)当a为定值,θ变化时,求$\frac{{S}_{1}}{{S}_{2}}$的最小值,及此时的θ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.第五届全国绿色运动健身大赛于2015年10月24日在安徽池州开赛.据了解,本届绿运健身大赛以“绿色池州、绿色运动、绿色生活”为主题.
为调查某社区年轻人的周末生活状况,研究这一社区年轻人在周末的休闲方式与性别的关系,随机调查了该社区年轻人80人,得到下面的数据表:
        休闲方式
性别
 逛街上网  合计
 男 10 50 60
 女 10 10 20
 合计 20  6080 
(1)根据以上数据,能否有99%的把握认为“周末年轻人的休闲方式与性别有关系”?
(2)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男生,设调查的3人在这一段时间以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
 P(K2≥k0 0.150.10  0.050.025  0.010
 k02.072  2.7063.841  5.0246.635 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}x=\sqrt{3}+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4.
(Ⅰ)求出曲线C2的直角坐标方程;
(Ⅱ)若C1与C2相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,D为BC的中点.则直线DB1与平面A1C1D所成角的正弦值$\frac{4}{15}\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知曲线C的极坐标方程为ρ=2cosθ.直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C和直线l的普通方程方程;
(2)设曲线C和直线l相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,其中正视图是圆心角为270°的扇形,俯视图与侧视图中圆的半径为2,则这个几何体的表面积是(  )
A.16πB.14πC.12πD.

查看答案和解析>>

同步练习册答案