11£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}+4x-3£¬1¡Üx¡Ü3}\\{x-3£¬x£¾3}\\{\;}\end{array}\right.$£¬ÈôÔÚÆä¶¨ÒåÓòÄÚ´æÔÚn£¨n¡Ý2£¬n¡ÊN*£©¸ö²»Í¬µÄÊýx1£¬x2£¬¡­£¬xn£¬Ê¹µÃ$\frac{f£¨{x}_{1}£©}{{x}_{1}}$=$\frac{f£¨{x}_{2}£©}{{x}_{2}}$=¡­=$\frac{f£¨{x}_{n}£©}{{x}_{n}}$£¬ÔònµÄ×î´óÖµÊÇ3£»Èôn=2£¬Ôò$\frac{f£¨{x}_{n}£©}{{x}_{n}}$µÄ×î´óÖµµÈÓÚ4-$2\sqrt{3}$£®

·ÖÎö ×÷³öf£¨x£©µÄͼÏó£¬ÀûÓÃ$\frac{f£¨{x}_{1}£©}{{x}_{1}}$=$\frac{f£¨{x}_{2}£©}{{x}_{2}}$=¡­=$\frac{f£¨{x}_{n}£©}{{x}_{n}}$=kµÄ¼¸ºÎÒâÒåÊǹýÔ­µãµÄÖ±ÏßÓëf£¨x£©ÏཻµãµÄбÂÊ£®ÀûÓÃÊýÐνáºÏ½øÐÐÇó½â¼´¿É£®

½â´ð ½â£º×÷³öº¯Êýf£¨x£©µÄͼÏóÈçͼ£º$\frac{f£¨{x}_{1}£©}{{x}_{1}}$=$\frac{f£¨{x}_{2}£©}{{x}_{2}}$=¡­=$\frac{f£¨{x}_{n}£©}{{x}_{n}}$=kµÄ¼¸ºÎÒâÒåÊǹýÔ­µãµÄÖ±ÏßÓëf£¨x£©ÏཻµãµÄбÂÊ£¬
ÓÉͼÏóÖª¹ýÔ­µãµÄÖ±ÏߺÍf£¨x£©×î¶àÓÐ3¸ö½»µã£¬¼´nµÄ×î´óÖµÊÇ3£¬
Èôn=2£¬ÔòÖ±ÏßÓëf£¨x£©ÓÐÁ½¸ö½»µã£¬
Ôòµ±¹ýÔ­µãµÄÖ±Ïßy=kxµÄбÂÊk=0£¬»òÕßy=kxÓëf£¨x£©ÔÚ1¡Üx¡Ü3ÏàÇÐʱµÄбÂÊ£¬
ÆäÖÐ$\frac{f£¨{x}_{n}£©}{{x}_{n}}$µÄ×î´óֵΪy=kxf£¨x£©ÔÚ1¡Üx¡Ü3ÏàÇÐʱµÄбÂÊ£¬
½«y=kx´úÈëy=-x2+4x-3£¬µÃkx=-x2+4x-3£¬¼´x2+£¨k-4£©x+3=0£¬
ÓÉÅбðʽ¡÷=£¨k-4£©2-12=0µÃk-4=¡À$2\sqrt{3}$£¬¼´k=4¡À$2\sqrt{3}$£¬
¡ß·½³ÌµÄ¸ùx=$-\frac{k-4}{2}$¡Ê£¨1£¬2£©£¬
¡à0£¼k£¼2£¬Ôòk=4-$2\sqrt{3}$£¬
¹Ê$\frac{f£¨{x}_{n}£©}{{x}_{n}}$µÄ×î´óÖµµÈÓÚ4-$2\sqrt{3}$£¬
¹Ê´ð°¸Îª£º3£¬4-$2\sqrt{3}$

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é·Ö¶Îº¯ÊýµÄÓ¦Óã¬ÕýÈ·Àí½â$\frac{f£¨{x}_{1}£©}{{x}_{1}}$=$\frac{f£¨{x}_{2}£©}{{x}_{2}}$=¡­=$\frac{f£¨{x}_{n}£©}{{x}_{n}}$=kµÄ¼¸ºÎÒâÒåÊǹýÔ­µãµÄÖ±ÏßÓëf£¨x£©ÏཻµãµÄбÂÊ£¬Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®×¢ÒâÀûÓÃÊýÐνáºÏ½øÐÐÇó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÔÕýÈýÀâÖùµÄ¶¥µãΪ¶¥µãµÄËÄÃæÌå¹²ÓÐ12¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªËÄÀâ×¶P-ABCDµÄÈýÊÓͼÈçͼËùʾ£¬Ôò´ËËÄÀâ×¶Íâ½ÓÇòµÄ°ë¾¶Îª£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\sqrt{5}$C£®$\sqrt{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=x|x2-a|£¬Èô´æÔÚx¡Ê[1£¬2]£¬Ê¹µÃf£¨x£©£¼2£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-1£¬5£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®2$\sqrt{3}$C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¶¨Òåmax{a£¬b}=$\left\{\begin{array}{l}{a£¬a¡Ýb}\\{b£¬a£¼b}\end{array}\right.$£¬ÈôʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{-1¡Üx¡Ü1}\\{-1¡Üy¡Ü1}\end{array}\right.$£¬Ôòmax{2x+1£¬x-2y+5}µÄ×îСֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èôº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}£¬x¡Ý2}\\{2x£¬x£¼2}\end{array}\right.$£¬Ôòf£¨log28£©=9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®º¯Êýf£¨x£©µÄͼÏóÈçͼËùʾ£¬f¡ä£¨x£©Îªº¯Êýf£¨x£©µÄµ¼º¯Êý£®ÔòÏÂÁÐÊýÖµÅÅÐòÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f¡ä£¨3£©£¼f¡ä£¨4£©£¼f£¨4£©-f£¨3£©£¼0B£®f¡ä£¨3£©£¼f£¨4£©-f£¨3£©£¼f¡ä£¨4£©£¼0C£®f¡ä£¨4£©£¼f£¨4£©-f£¨3£©£¼f¡ä£¨3£©£¼0D£®f£¨4£©-f£¨3£©£¼f¡ä£¨4£©£¼f¡ä£¨3£©£¼0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º¯Êýf£¨x£©=3x2-lnx-xµÄ¼«ÖµµãµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸