精英家教网 > 高中数学 > 题目详情
2.已知四棱锥P-ABCD的三视图如图所示,则此四棱锥外接球的半径为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{2}$D.2

分析 几何体为四棱锥,根据三视图判断四棱锥的一个侧面与底面垂直,判断各面的形状及三视图的数据对应的几何量,可得答案.

解答 解:因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,满足侧面PAD⊥底面ABCD,△PAD为等腰直角三角形,且高为2,可知外接球圆心为底面对角线的交点,可求得球半径为$\frac{1}{2}\sqrt{{4}^{2}+{2}^{2}}$=$\sqrt{5}$.
故选:B.

点评 本题考查了由三视图求四棱锥外接球的半径,根据三视图判断几何体的结构特征是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知不等式组$\left\{\begin{array}{l}{y≤x}\\{y≥-x}\\{x≤2}\end{array}\right.$表示的平面区域为S,点P(x,y)∈S,则z=2x+y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,已知向量$\overrightarrow{a}$=(1,2),又点A(8,0),B(-8,t),C(8sinθ,t).
(1)若$\overrightarrow{AB}$⊥$\overrightarrow{a}$,求向量$\overrightarrow{OB}$的坐标;
(2)若向量$\overrightarrow{AC}$与向量$\overrightarrow{a}$共线,当tsinθ取最小值时,求$\overrightarrow{OA}$•$\overrightarrow{OC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=AB=AD=2BC=2,∠BAD=θ,E是PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)若θ=120°,求二面角C-PB-A的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,各棱长均为2,D、E、F分别是棱AC,AA1,CC1的中点
(Ⅰ)求证:B1F∥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某几何体的三视图如图,则几何体的表面积为6+2$\sqrt{5}$+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,1≤x≤3}\\{x-3,x>3}\\{\;}\end{array}\right.$,若在其定义域内存在n(n≥2,n∈N*)个不同的数x1,x2,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$,则n的最大值是3;若n=2,则$\frac{f({x}_{n})}{{x}_{n}}$的最大值等于4-$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\left\{\begin{array}{l}|{lnx}|,({0<x≤{e^2}})\\{e^2}+2-x,({x>{e^2}})\end{array}$,存在x1<x2<x3,f(x1)=f(x2)=f(x3),则$\frac{{f({x_3})}}{{{x_1}{x_2}^2}}$的最大值为(  )
A.$\frac{1}{{2\sqrt{e}}}$B.$\frac{1}{{\sqrt{e}}}$C.$\frac{1}{e}$D.$\frac{1}{e^2}$

查看答案和解析>>

同步练习册答案