精英家教网 > 高中数学 > 题目详情
20.函数f(x)的图象如图所示,f′(x)为函数f(x)的导函数.则下列数值排序正确的是(  )
A.f′(3)<f′(4)<f(4)-f(3)<0B.f′(3)<f(4)-f(3)<f′(4)<0C.f′(4)<f(4)-f(3)<f′(3)<0D.f(4)-f(3)<f′(4)<f′(3)<0

分析 根据f(x)的图象可知,函数在(0,+∞)单调递减,得到f′(x)小于0且导函数为增函数,再根据中值定理得到在(3,4)存在一点ξ,f′(ξ)成立,利用增减性找到正确的选项即可.

解答 解:由函数图象知,f(x)在(0,+∞)单调递减,所以f′(x)<0;且f′(x)为增函数;
根据中值定理得到在(3,4)存在一点ξ,
f′(ξ)=$\frac{f(4)-f(3)}{4-3}$,所以f′(3)<$\frac{f(4)-f(3)}{4-3}$<f′(4)<0,
即f′(3)<f(4)-f(3)<f′(4)<0,
故选:B.

点评 考查学生利用导数研究函数的单调性的能力,以及会利用中值定理解决数学问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=AB=AD=2BC=2,∠BAD=θ,E是PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)若θ=120°,求二面角C-PB-A的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,1≤x≤3}\\{x-3,x>3}\\{\;}\end{array}\right.$,若在其定义域内存在n(n≥2,n∈N*)个不同的数x1,x2,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$,则n的最大值是3;若n=2,则$\frac{f({x}_{n})}{{x}_{n}}$的最大值等于4-$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=AA1=4,AC⊥BC,D是线段AB上一点.
(1)设$\overrightarrow{AB}$=5$\overline{AD}$,求异面直线AC1与CD所成角的余弦值;
(2)若AC1∥平面B1CD,求二面角D-CB1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为(  )
A.12+4$\sqrt{2}$+2$\sqrt{13}$B.12+8$\sqrt{2}$+2$\sqrt{13}$C.12+4$\sqrt{2}$+2$\sqrt{26}$D.12+8$\sqrt{2}$+2$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lg(3-4x+x2)的定义域为M.
(1)求f(x)的单调区间及值域;
(2)当x∈M时,关于x的方程1og2(3-x)-1og2(1+x)=b(b∈R)有实数根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\left\{\begin{array}{l}|{lnx}|,({0<x≤{e^2}})\\{e^2}+2-x,({x>{e^2}})\end{array}$,存在x1<x2<x3,f(x1)=f(x2)=f(x3),则$\frac{{f({x_3})}}{{{x_1}{x_2}^2}}$的最大值为(  )
A.$\frac{1}{{2\sqrt{e}}}$B.$\frac{1}{{\sqrt{e}}}$C.$\frac{1}{e}$D.$\frac{1}{e^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx,g(x)═ax2-(a+1)x+1(a∈R),当a=0时,求f(x)+g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.阅读如图所示的程序框图,若输入n=2017,则输出的S值是(  )
A.$\frac{2016}{4033}$B.$\frac{2017}{4035}$C.$\frac{4032}{4033}$D.$\frac{4034}{4035}$

查看答案和解析>>

同步练习册答案