精英家教网 > 高中数学 > 题目详情
如图所示,ABCD-A1B1C1D1是棱长为6的正方体,E,F分别是棱AB,BC上的动点,且AE=BF.当A1,E,F,C1共面时,平面A1DE与平面C1DF所成二面角的余弦值为(  )
A.B.C.D.
B
以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,易知当E(6,3,0),F(3,6,0)时,A1,E,F、C1共面,设平面A1DE的法向量为n1=(a,b,c),

依题意得
可取n1=(-1,2,1),同理可得平面C1DF的一个法向量为n2=(2,-1,1),故平面A1DE与平面C1DF所成二面角的余弦值为.故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB ≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.

(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三条直线l1:2x-y+a=0(a>0),直线l2:4x-2y-1=0和直线l3:x+y-1=0,且l1与l2的距离是.
(1)求a的值;
(2)能否找到一点P,使得P点同时满足下列三个条件:
①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是.若能,求P点坐标;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是同一球面上的四点,且每两点间距离相等,都等于2,则球心到平面的距离是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A(2,1,3),B(0,1,0),则点A到点B距离为(  )
A.13B.12C.
13
D.2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,三棱柱的各棱长均为2,侧棱与底面所成的角为为锐角,且侧面⊥底面,给出下列四个结论:



③直线与平面所成的角为
.
其中正确的结论是( )
A.①③B.②④C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成的角的正弦值为(  )
A.B.-C.D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若+x+y,则x、y的值分别为(  )
A.x=1,y=1B.x=1,y=
C.x=,y=D.x=,y=1

查看答案和解析>>

同步练习册答案