精英家教网 > 高中数学 > 题目详情
函数f(x)=的定义域为R,则实数m的取值范围是( )
A.(0,1]
B.[0,1]
C.(-∞,0)∪(1,+∞)
D.(-∞,0)∪[1,+∞)
【答案】分析:函数的定义域是一切实数,即mx2-6mx+m+8≥0对任意x∈R恒成立,结合二次函数的图象,只要考虑m和△即可.
解答:解:函数y=的定义域是一切实数,即mx2+4mx+m+3≥0对任意x∈R恒成立
当m=0时,有3>0,显然成立;
当m≠0时,有

解之得 0<m≤1.
综上所述得 0≤m≤1.
故选B.
点评:本题主要考查了二次型不等式恒成立问题,解题的关键是不要忘掉对m=0的讨论,同时考查了转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一种运算a⊕b=
a,a≤b
b,a>b
,令f(x)=(cos2x+sinx)⊕
5
4
,且x∈[0,
π
2
],则函数f(x-
π
2
)的最大值是(  )
A、
5
4
B、1
C、-1
D、-
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知函数f(x)=mx2+(n+2)x-1是定义在[m,m2-6]上的偶函数,求:①m,n的值   ②函数f(x)的值域 ③求函数f(x-1)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义二阶行列式
.
ab
cd
.
=ad-bc,则函数f(x)=
.
sinx1
cosx
3
.
的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+1定义在R上.若f(x)能表示为一个偶函数g(x)与一个奇函数h(x)之和
(1)求g(x)与h(x)的解析式
(2)设h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(3)在(2)的条件下,若p(t)≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.
下列说法正确的有:
①②
①②
.(写出所有正确说法的序号)
①对给定的函数f(x),其承托函数可能不存在,也可能有无数个;
②g(x)=ex为函数f(x)=ex的一个承托函数;
③函数f(x)=
x
x2+x+1
不存在承托函数;
④函数f(x)=
1
5x2-4x+11
,若函数g(x)的图象恰为f(x)在点p(1,
1
2
)
处的切线,则g(x)为函数f(x)的一个承托函数.

查看答案和解析>>

同步练习册答案