精英家教网 > 高中数学 > 题目详情
在△ABC中,已知sinB+sinC=sinA(cosB+cosC).
(1)判断△ABC的形状;
(2)若角A所对的边a=1,试求△ABC内切圆半径的取值范围.
(1)由已知等式利用正、余弦定理得b+c=a(
a2+c2-b2
2ac
+
a2+b2-c2
2ab
),…(3分)
整理得(b+c)(b2+c2-a2)=0,
∴b2+c2=a2
∴△ABC为直角三角形,且∠A=90°.…(6分)
(2)由△ABC为直角三角形,
知内切圆半径r=
b+c-a
2
=
1
2
(sinB+sinC-1)=
1
2
(sinB+sinB-1),…(11分)
∵sinB+sinB=
2
sin(B+
π
4
)≤
2

∴0<r≤
2
-1
2
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知向量,定义函数f(x)=·.
(1)求函数f(x)的表达式,并指出其最大值和最小值;
(2)在锐角△ABC中,角ABC的对边分别为abc,且f(A)=1,bc=8,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知sinθ,cosθ是关于x的二次方程x2-(
3
-1)x+m=0,(m∈R)的两个实数根,求:
(1)m的值;
(2)
cosθ-sinθtanθ
1-tanθ
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量
AB
=(cos120°,sin120°),
BC
=(cos30°,sin45°)
,则△ABC的形状为(  )
A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
AC
=(cos
x
2
+sin
x
2
,-sin
x
2
),
BC
=(cos
x
2
-sin
x
2
,2cos
x
2
)
,设f(x)=
AC
BC

(1)求f(x)的最小正周期和单调递减区间;
(2)设关于x的方程f(x)=a在[-
π
2
π
2
]有两个不相等的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△她BC中,已知sinC=2sin她cosB,那么△她BC一定是(  )
A.等腰直角三角形B.等腰三角形
C.直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)已知函数f(x)=(
3
sinωx+cosωx)cosωx-
1
2
(ω>0)
的最小正周期为4π.
(1)求ω的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=
2
sin(
π
4
-x)+4sin
x
2
cos
x
2

(Ⅰ)在△ABC中,cosA=-
3
5
,求f(A)的值;
(Ⅱ)求函数f(x)的最小正周期及函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为                .                          

查看答案和解析>>

同步练习册答案