精英家教网 > 高中数学 > 题目详情
已知函数y=3sin2x的图象C1,问需要经过怎样的变换得到函数y=3cos(2x-
4
)的图象C2,并且平移路程最短?
分析:根据函数y=Asin(ωx+φ)的图象变换规律,若把函数y=3sin2x的图象C1,向右平移,需平移
8
个单位长度;若把函数y=3sin2x的图象C1,向左平移,需平移
8
个单位长度;综合可得结论.
解答:解:平移的方法一:∵y=3cos(2x-
4
)=3sin[
π
2
+(2x-
4
)]=3sin(2x-
4
)=3sin[2(x-
8
)],
∴可将y=3sin2x的图象C1向右平移
8
个单位长度可得C2
平移的方法二:∵y=3cos(2x-
4
)=3sin(2x-
4
)=3sin(2x-
4
+2π)=3sin[2(x+
8
)],
∴可将y=3sin2x的图象C1向左平移
8
个单位长度可得C2
综上可知,平移路程最短是向左平移
8
个单位长度.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=3sin(2x-
π6
).求①函数的周期T;②函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3sin(
1
2
x-
π
4
)

(1)列表、描点,用五点法作出函数的图象;
(2)说明此图象是由y=sinx的图象经过怎么样的变化得到的;
(3)求此函数的振幅、周期和初相;
列表:描点连线:
x
(
1
2
x-
π
4
)
3sin (
1
2
x-
π
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3sin(2x+
π4
)

(1)求该函数的周期,单调区间;
(2)求该函数的值域、对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3sinωx(ω>0)的周期是π,将函数y=3cos(ωx-
π
2
)(ω>0)
的图象沿x轴向右平移
π
8
个单位,得到函数y=f(x)的图象,则函数y=f(x)的单调增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3sin(2x+
π4
)

(1)求该函数最小正周期和单调递增区间;
(2)求该函数的最小值,并给出此时x的取值集合.

查看答案和解析>>

同步练习册答案