| A. | cos(A+B)=cosC | B. | sin(A+B)=-sinC | C. | cos($\frac{A}{2}$+C)=sinB | D. | sin$\frac{B+C}{2}$=cos$\frac{A}{2}$ |
分析 利用三角形的内角和公式、诱导公式逐一判断各个选项中的式子是否成立,从而得出结论.
解答 解:∵角A,B,C是△ABC的三个内角,∴A+B=π-C,∴cos(A+B)=cos(π-C)=-cosC,故排除A;
又sin(A+B)=sin(π-C)=sinC,故排除B;
∵sin$\frac{B+C}{2}$=sin$\frac{π-A}{2}$=cos $\frac{A}{2}$,故D满足条件;
由于$\frac{A}{2}$+C有可能为钝角,故cos($\frac{A}{2}$+C)可能小于零,而sinB>0,故C不一定成立;
故选:D.
点评 本题主要考查三角形的内角和公式、诱导公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 12 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4,$\frac{π}{3}$ | B. | 4,$\frac{2π}{3}$ | C. | 2,$\frac{π}{3}$ | D. | 2,$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{7}$ | B. | $\sqrt{30}$ | C. | $\frac{\sqrt{15}}{2}$ | D. | $\frac{\sqrt{30}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com