| A. | 4,$\frac{π}{3}$ | B. | 4,$\frac{2π}{3}$ | C. | 2,$\frac{π}{3}$ | D. | 2,$\frac{2π}{3}$ |
分析 利用三角恒等变换化简函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,正弦、余弦函数的奇偶性、周期性求得ω,φ的值.
解答 解:将函数$f(x)=\sqrt{3}sin(\frac{1}{4}x)cos(\frac{1}{4}x)+{cos^2}(\frac{1}{4}x)-\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin$\frac{x}{2}$+$\frac{1+cos\frac{x}{2}}{2}$-$\frac{1}{2}$=sin($\frac{x}{2}$+$\frac{π}{6}$)的图象向左平移φ(0<φ<π)个单位,
可得y=sin[$\frac{1}{2}$(x+φ)+$\frac{π}{6}$]=sin($\frac{x}{2}$+$\frac{φ}{2}$+$\frac{π}{6}$)的图象,
再将所得图象上各点的横坐标缩短为原来的$\frac{1}{ω}$(ω>0)倍,纵坐标不变,得到函数y=g(x)=sin($\frac{x}{2}$ω+$\frac{φ}{2}$+$\frac{π}{6}$)的图象.
∵已知函数y=g(x)是周期为π的偶函数,∴$\frac{2π}{\frac{ω}{2}}$=π,且$\frac{1}{2}$φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$(k∈Z).
求得ω=4,φ=$\frac{2π}{3}$,
故选:B.
点评 本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,正弦、余弦函数的奇偶性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | cos(A+B)=cosC | B. | sin(A+B)=-sinC | C. | cos($\frac{A}{2}$+C)=sinB | D. | sin$\frac{B+C}{2}$=cos$\frac{A}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<c<b | B. | c<a<b | C. | b<c<a | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 星期x | 1 | 2 | 3 | 4 | 5 |
| 需求量y(单位:kg) | 236 | 246 | 257 | 276 | 286 |
| 时间代号t | -2 | -1 | 0 | 1 | 2 |
| z | -21 | -11 | 0 | 19 | 29 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com