精英家教网 > 高中数学 > 题目详情
20.(Ⅰ)解不等式|6-|2x+1||>1;
(Ⅱ)若关于x的不等式|x+1|+|x-1|+3+x<m有解,求实数m的取值范围.

分析 (Ⅰ)通过讨论x的范围,求出不等式的解集即可;(Ⅱ)通过讨论x的范围,去掉绝对值,求出不等式的解集,得到关于m的不等式,取并集即可.

解答 解:(Ⅰ)∵|6-|2x+1||>1,
∴|2x+1|>7或|2x+1|<5,
解得:x>3或x<-4或-3<x<2,
故原不等式的解集是{x|x>3或x<-4或-3<x<2};
(Ⅱ)∵|x+1|+|x-1|+3+x<m,
∴x≥1时,x+1+x-1+3+x<m,
解得:x<$\frac{m-3}{3}$,
若关于x的不等式|x+1|+|x-1|+3+x<m有解,
故$\frac{m-3}{3}$>1,解得:m>6,
-1<x<1时,x+1+1-x+3+x<m,
解得:x<m-5,
若关于x的不等式|x+1|+|x-1|+3+x<m有解,
故m-5>1,解得:m>6,
m≤-1时,-x-1+1-x+3+x<m,
解得:x>3-m,
若关于x的不等式|x+1|+|x-1|+3+x<m有解,
故3-m<-1,解得:m>4,
综上,实数m的取值范围(4,+∞).

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图,角α的终边与单位圆交于点M,M的纵坐标为$\frac{4}{5}$,则cosα=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a∈R,若复数$\frac{a+i}{1+i}$(i为虚数单位)的实部和虚部相等,则0,$|{\overline z}$|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线${l_1}:\sqrt{3}x+y-1=0,{l_2}:ax+y=1$,且l1⊥l2,则l1的倾斜角为$\frac{2π}{3}$,原点到l2的距离为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l1的方程为3x+4y-12=0,
(1)求l2的方程,使得:①l2与l1平行,且过点(-1,3);
②l2与l1垂直,且l2与两坐标轴围成的三角形面积为4;
(2)直线l1与两坐标轴分别交于A、B 两点,求三角形OAB(O为坐标原点)内切圆及外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)是区间[-1,3]上的增函数,若f(a)>f(1-2a),则a的取值范围是($\frac{1}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数$f(x)=\sqrt{3}sin(\frac{1}{4}x)cos(\frac{1}{4}x)+{cos^2}(\frac{1}{4}x)-\frac{1}{2}$的图象向左平移φ(0<φ<π)个单位,再将所得图象上各点的横坐标缩短为原来的$\frac{1}{ω}$(ω>0)倍,纵坐标不变,得到函数y=g(x)的图象,已知函数y=g(x)是周期为π的偶函数,则ω,φ的值分别为(  )
A.4,$\frac{π}{3}$B.4,$\frac{2π}{3}$C.2,$\frac{π}{3}$D.2,$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点P在圆C1:x2+y2+4x+2y+1=0上,点Q在圆C2:x2+y2-4x-4y+6=0上,则|PQ|的最小值是(  )
A.5B.1C.$3-\sqrt{2}$D.$3+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求乙以4比1获胜的概率;
(2)求甲获胜且比赛局数多于5局的概率.

查看答案和解析>>

同步练习册答案