精英家教网 > 高中数学 > 题目详情
10.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求乙以4比1获胜的概率;
(2)求甲获胜且比赛局数多于5局的概率.

分析 (1)记“乙以4比1获胜”为事件A,则A表示乙赢了3局甲赢了一局,且第五局乙赢,再根据n次独立重复实验中恰好发生k次的概率计算公式求得P(A) 的值.
(2)利用n次独立重复实验中恰好发生k次的概率计算公式求得甲以4比2获胜的概率,以及甲以4比3获胜的概率,再把这2个概率值相加,即得所求.

解答 解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是$\frac{1}{2}$,
记“乙以4比1获胜”为事件A,则A表示乙赢了3局甲赢了一局,且第五局乙赢,
∴P(A)=${C}_{4}^{3}$•${(\frac{1}{2})}^{3}$•$\frac{1}{2}$•$\frac{1}{2}$=$\frac{1}{8}$.
(2)记“甲获胜且比赛局数多于5局”为事件B,则B表示甲以4比2获胜,或甲以4比3获胜.
因为甲以4比2获胜,表示前5局比赛中甲赢了3局且第六局比赛中甲赢了,
这时,无需进行第7局比赛,故甲以4比2获胜的概率为${C}_{5}^{3}$•${(\frac{1}{2})}^{3}$•${(\frac{1}{2})}^{2}$•$\frac{1}{2}$=$\frac{5}{32}$.
甲以4比3获胜,表示前6局比赛中甲赢了3局且第7局比赛中甲赢了,
故甲以4比3获胜的概率为${C}_{6}^{3}$•${(\frac{1}{2})}^{3}$•${(\frac{1}{2})}^{3}$•$\frac{1}{2}$=$\frac{5}{32}$,
故甲获胜且比赛局数多于5局的概率为$\frac{5}{32}$+$\frac{5}{32}$=$\frac{5}{16}$.

点评 本题主要考查n次独立重复实验中恰好发生k次的概率,等可能事件的概率,所求的事件的概率等于用1减去它的对立事件概率,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.(Ⅰ)解不等式|6-|2x+1||>1;
(Ⅱ)若关于x的不等式|x+1|+|x-1|+3+x<m有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②回归方程$\widehat{y}$=bx+a必过点($\overline{x}$,$\overline{y}$);
③曲线上的点与该点的坐标之间具有相关关系;
④在一个2×2列联表中,由计算得K2=13.079,则其两个变量间有关系的可能性是90%
(可参照下列表格).其中错误的是(  )
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
K0.4550.7081.3232.0722.7063.845.0246.6357.87910.83
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题A:点M的直角坐标是(0,1),命题B:点M的极坐标是(1,$\frac{π}{2}$),则命题A是命题B的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{1}{x}$上的点到直线y=-x-1的最短距离是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学校从星期一到星期五的大米需求量逐渐增加,前5天的大米需求量统计数据如表:
星期x12345
需求量y(单位:kg)236246257276286
为了研究方便,工作人员为此对数据进行了处理,t=x-3,z=y-257,得到如表:
时间代号t-2-1012
z-21-1101929
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求y关于x的回归方程;
(3)利用(2)中所求出的回归方程预测该校星期日的大米需求量.
(附:线性回归方程$\hat y=\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{x^{-2}}}}},\hat a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知z为复数,z+2i和$\frac{z}{2-i}$都是实数,其中i为虚数单位.求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等比数列{an}中,a3,a15是方程x2-6x+1=0的两根,则a7a8a9a10a11等于(  )
A.-1B.1C.-15D.15

查看答案和解析>>

同步练习册答案