精英家教网 > 高中数学 > 题目详情
4.已知角α的终边过点P(5a,-12a),a<0.求:
(1)tanα;      
(2)sinα+cosα.

分析 由题意可得x=5a,y=-12a,r=-13a,利用任意角的三角函数的定义,即可得到 结论.

解答 解:由题意可得 x=5a,y=-12a,r=-13a,
(1)tanα=$\frac{y}{x}$=-$\frac{12}{5}$;      
(2)sinα=$\frac{12}{13}$,cosα=-$\frac{5}{13}$,∴sinα+cosα=$\frac{7}{13}$.

点评 本题考查任意角的三角函数的定义,两点间的距离公式的应用,正确运用任意角的三角函数的定义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知m,n为直线,α,β为空间的两个平面,给出下列命题:
①$\left\{\begin{array}{l}m⊥α\\ m⊥n\end{array}$,⇒n∥α;②$\left\{\begin{array}{l}m?α\\ n?β\\ α∥β\end{array}$,⇒m∥n;③$\left\{\begin{array}{l}m⊥α\\ m⊥β\end{array}$,⇒α∥β;④$\left\{\begin{array}{l}m⊥β\\ n⊥β\end{array}$,⇒m∥n.
其中的正确命题为③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l1的方程为3x+4y-12=0,
(1)求l2的方程,使得:①l2与l1平行,且过点(-1,3);
②l2与l1垂直,且l2与两坐标轴围成的三角形面积为4;
(2)直线l1与两坐标轴分别交于A、B 两点,求三角形OAB(O为坐标原点)内切圆及外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数$f(x)=\sqrt{3}sin(\frac{1}{4}x)cos(\frac{1}{4}x)+{cos^2}(\frac{1}{4}x)-\frac{1}{2}$的图象向左平移φ(0<φ<π)个单位,再将所得图象上各点的横坐标缩短为原来的$\frac{1}{ω}$(ω>0)倍,纵坐标不变,得到函数y=g(x)的图象,已知函数y=g(x)是周期为π的偶函数,则ω,φ的值分别为(  )
A.4,$\frac{π}{3}$B.4,$\frac{2π}{3}$C.2,$\frac{π}{3}$D.2,$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}的前n项和为Sn,且满足a2=3,S6=36,则a4=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点P在圆C1:x2+y2+4x+2y+1=0上,点Q在圆C2:x2+y2-4x-4y+6=0上,则|PQ|的最小值是(  )
A.5B.1C.$3-\sqrt{2}$D.$3+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知ab<0,则$\frac{b}{a}$+$\frac{a}{b}$的取值范围是(  )
A.(-∞,-2)B.(-∞,-2]C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线$\left\{\begin{array}{l}{x=2-tsin30°}\\{y=-1+tsin30°}\end{array}\right.$(t为参数)与圆x2+y2=8相交于B、C两点,O为原点,则△BOC的面积为(  )
A.2$\sqrt{7}$B.$\sqrt{30}$C.$\frac{\sqrt{15}}{2}$D.$\frac{\sqrt{30}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=30.1,b=logπ2,c=log2sin$\frac{2π}{3}$.则(  )
A.c>a>bB.a>b>cC.b>c>aD.c>b>a

查看答案和解析>>

同步练习册答案