精英家教网 > 高中数学 > 题目详情
7.某种通过电子邮件传播的计算机病毒,在开始爆发后的5个小时内,每小时有1000台计算机被感染,从第6小时起,每小时被感染的计算机以增长率为50%的速度增长,则每小时被感染的计算机数y与开始爆发后t(小时)的函数关系为$\left\{\begin{array}{l}{1000,}&{0<t≤5}\\{1000×1.{5}^{t-5},}&{t≥6}\end{array}\right.$.

分析 分0<t≤5、t≥6两种情况讨论,当0<t≤5时y=1000,当t≥6时y=1000×(1+50%)t-5,进而计算可得结论.

解答 解:依题意,当0<t≤5时,y=1000,
当t≥6时,y=1000×(1+50%)t-5=1000×1.5t-5
∴y=$\left\{\begin{array}{l}{1000,}&{0<t≤5}\\{1000×1.{5}^{t-5},}&{t≥6}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{1000,}&{0<t≤5}\\{1000×1.{5}^{t-5},}&{t≥6}\end{array}\right.$.

点评 本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.$\frac{64•({2}^{n+1})^{2}•(\frac{1}{2})^{2n+1}}{{4}^{n}}$的值为(  )
A.$\frac{1}{{6}^{4}}$B.22n+5C.2${\;}^{{n}^{2}-2n+6}$D.($\frac{1}{2}$)2n-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=ln(x+1),则函数f(x)的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的值域.
(1)y=log2(x2+4);
(2)y=log${\;}_{\frac{1}{2}}$(3+2x-x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知一个三角形的两个角平分线所在直线方程分别为l1:2x-3y-1=0和l2:x+y=0,点A(1,2)是这个三角形的一个顶点,求BC边所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=3x+$\frac{x-2}{x+1}$在(-1,+∞)上为增函数,求方程f(x)=0的正根.(精确度为0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数y=asin(x+$\frac{π}{6}$)+b的值域为[-$\frac{1}{2}$,$\frac{9}{2}$],求a的值及函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.指数函数f(x)=(a2-x在R上是减函数,则a的取值范围是 (  )
A.0<a<1B.a<1C.|a|>1D.a>-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若sin($\frac{π}{2}$+α)=sin(π-α),则α的取值集合为{α|α=kπ+$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

同步练习册答案