分析 分0<t≤5、t≥6两种情况讨论,当0<t≤5时y=1000,当t≥6时y=1000×(1+50%)t-5,进而计算可得结论.
解答 解:依题意,当0<t≤5时,y=1000,
当t≥6时,y=1000×(1+50%)t-5=1000×1.5t-5,
∴y=$\left\{\begin{array}{l}{1000,}&{0<t≤5}\\{1000×1.{5}^{t-5},}&{t≥6}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{1000,}&{0<t≤5}\\{1000×1.{5}^{t-5},}&{t≥6}\end{array}\right.$.
点评 本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{6}^{4}}$ | B. | 22n+5 | C. | 2${\;}^{{n}^{2}-2n+6}$ | D. | ($\frac{1}{2}$)2n-7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com