(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC,
AB=2, AD=
, BC=
,椭圆E以A,B为焦点且经过点D. (1)建立适当的直角坐标系,求椭圆E的方程; (2)若点Q满足:
,问是否存在不平行AB,的直线
与椭圆E交于M、N两点.且|MQ|=|NQ|.若存在,求直线
的斜率
的取值范围,若不存在,请说明理由.
科目:高中数学 来源: 题型:
(09年长沙一中第八次月考理)(本小题满分12分)如图,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EF//AC,∠CAF=∠AFE=90º,AB=
,AF=FE=1.
(1)求证EC//平面BDF;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上确定一点P,使得PF与BC所成的角是60°.
![]()
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖南省元月考理科数学试卷(解析版) 题型:解答题
(本小题满分12分)如图,四棱锥P--ABCD中,PB
底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.
![]()
(1)求异面直线PA与CD所成的角;
(2)求证:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年云南省高二上学期第一次月考文科数学卷 题型:解答题
(本题满分12分)
在立体图形P-ABCD中,底面ABCD是一个直角梯形,∠BAD=90°,AD∥BC,
AB=BC=a,AD=PA=2a,E是
边的中点,且PA⊥底面ABCD。
(1)求证:BE⊥PD
(2)求证:![]()
(3)求异面直线AE与CD所成的角.
![]()
查看答案和解析>>
科目:高中数学 来源:2013届陕西省高二上学期期末考试理科数学 题型:解答题
(本小题满分12)如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使PD⊥平面ABCD(如图②)
(1)求证AP∥平面EFG;
(2)求平面EFG与平面PDC所成角的大小;
(3)求点A到平面EFG的距离。![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com