分析 (1)由题意利用两角和的正弦函数公式可得f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),由2kπ-$\frac{π}{2}$≤x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,即可解得f(x)的单调递增区间.
(2)由两角和的正弦函数公式可得f(x)=$\sqrt{{A}^{2}+1}$sin(x+φ),其中tanφ=$\frac{1}{A}$,由题意可求sin(x0+φ)=1,其中tanφ=$\frac{1}{A}$,$\sqrt{{A}^{2}+1}$=$\sqrt{13}$,进而解得A,sinφ的值,解得x0=2kπ+$\frac{π}{2}$-φ,k∈Z,利用诱导公式即可解得cosx0 的值.
解答 解:(1)∵由题意可得:f(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
∴由2kπ-$\frac{π}{2}$≤x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:2kπ-$\frac{3π}{4}$≤x≤2kπ+$\frac{π}{4}$,k∈Z,
可得单调递增区间为:[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$],k∈Z.
(2)∵f(x)=Asinx+cosx=$\sqrt{{A}^{2}+1}$sin(x+φ),其中tanφ=$\frac{1}{A}$,
且函数f(x)在x=x0处取得最大值$\sqrt{13}$,
∴sin(x0+φ)=1,其中tanφ=$\frac{1}{A}$,$\sqrt{{A}^{2}+1}$=$\sqrt{13}$,
∴由A>0,解得:A=2$\sqrt{3}$,sinφ=$\frac{1}{\sqrt{{A}^{2}+1}}$=$\frac{\sqrt{13}}{13}$,
x0+φ=2kπ+$\frac{π}{2}$,k∈Z,
∴x0=2kπ+$\frac{π}{2}$-φ,k∈Z,
∴cosx0 =cos(2kπ+$\frac{π}{2}$-φ)=sinφ=$\frac{\sqrt{13}}{13}$.
点评 本题主要考查了两角和的正弦函数公式,正弦函数的图象和性质,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | mf(xn)>nf(xm) | B. | mf(xn)<nf(xm) | ||
| C. | mf(xn)=nf(xm) | D. | mf(xn)与nf(xm)大小不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 横坐标伸长到原来的2倍,纵坐标不变 | |
| B. | 横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 | |
| C. | 纵坐标伸长到原来的2倍,横坐标不变 | |
| D. | 纵坐标缩短到原来的$\frac{1}{2}$倍,横坐标不变 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com