精英家教网 > 高中数学 > 题目详情

甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次任意抽取3道题,独立作答,然后由乙回答剩余3题,每人答对其中的2题就停止答题,即闯关成功。已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是
(1)求甲、乙至少有一人闯关成功的概率;
(2)设甲答对题目的个数为,求的分布列及数学期望.

(1)
(2)







.

解析试题分析:(1)此题审题很重要,主要是对“每人答对其中的2题就停止答题,即闯关成功”理解,即当前两题都答正确,就可不答第三题,或第三题答对与否,不影响闯关成功,从它的对立事件考虑就显得简单,同时注意甲和乙是两个不同的常见概率模型;(2)在正确处理好(1)的前提下,此题就不难,具备知识走个程序即可.
试题解析:(1)设甲、乙闯关成功分别为.
.
所以,甲乙至少有1人闯关成功的概率为.
(2)由题意,.
 
的分布列为


1
2



.
考点:概率、概率分布及数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

一种新药,给一个病人服用后治与愈的概率是95%,则服用这种新药品的4名病人中,至少3人被治愈的概率是          .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲乙两人进行掰手腕比赛,比赛规则规定三分钟为一局,三分钟内不分胜负为平局,当有一人赢3局就结束比赛,否则继续进行,根据以往经验,每次甲胜的概率为,乙胜的概率为,且每局比赛胜负互不受影响.
(Ⅰ)求比赛4局乙胜的概率;
(Ⅱ)求在2局比赛中甲的胜局数为ξ的分布列和数学期望;
(Ⅲ)若规定赢一局得2分,平一局得1分,输一局得0分,比赛进行五局,积分有超过5分者比赛结束,否则继续进行,求甲得7分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,记ξ=|x-2|+|y-x|.
(1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;
(2)求随机变量ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面内,不等式确定的平面区域为,不等式组确定的平面区域为.
(1)定义横、纵坐标为整数的点为“整点”.在区域任取3个整点,求这些整点中恰有2个整点在区域的概率;
(2)在区域每次任取个点,连续取次,得到个点,记这个点在区域的个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个均匀的正方体玩具,各个面上分别写有1,2,3,4,5,6,将这个玩具先后抛掷2次,求:
(1)朝上的一面数相等的概率;(2)朝上的一面数之和小于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知方程是关于的一元二次方程.
(1)若是从集合四个数中任取的一个数,是从集合三个数中任取的一个数,求上述方程有实数根的概率;
(2)若,求上述方程有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设某地区型血的人数占总人口数的比为,现从中随机抽取3人.
(1)求3人中恰有2人为型血的概率;
(2)记型血的人数为,求的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
①列出所有可能的抽取结果;
②求抽取的2所学校均为小学的概率.

查看答案和解析>>

同步练习册答案