精英家教网 > 高中数学 > 题目详情
对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为函数f(x)不动点.已知函数f(x)=ax2+(b-7)x+18有两个不动点分别是-3和2.
(1)求a,b的值及f(x)的表达式;
(2)试求函数f(x)在区间[t,t+1]上的最大值g(t).
分析:(1)直接利用定义把条件转化为ax2+(b-8)x+18=0的两个根是-3和2,即可求a,b的值及f(x)的表达式;
(2)先对字母t进行分类讨论,再结合二次的单调性即可求函数f(x)的最大值g(t).
解答:解:(1)∵f(x)=ax2+(b-7)x+18的不动点是-3和2
∴ax2+(b-8)x+18=0的两个根是-3和2
8-b
a
=-1
18
a
=-6
a=-3
b=5

∴f(x)=-3x2-2x+18…(6分)
(2)①当t≥-
1
3
时,f(x)在[t,t+1]上单调递减,g(t)=-3t2-2t+18
②当t+1≤-
1
3
t≤-
4
3
时,f(x)在[t,t+1]上单调递增,g(t)=-3t2-8t+13
③当t<-
1
3
<t+1
-
4
3
<t<-
1
3
时,f(x)在[t,-
1
3
]
上单调递增,在[-
1
3
,t+1]
递减,
g(t)=
55
3
…(12分)
综上可知:g(t)=
-3t2-2t+18(t≥-
1
3
)
55
3
(-
4
3
<t<-
1
3
)
-3t2-8t+13(t≤-
4
3
)
…(13分)
点评:本题以新定义为载体,考查函数的解析式,考查二次函数在闭区间上的最值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),若存在区间M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”.给出下列4个函数:
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“稳定区间”的函数有
 
(填出所有满足条件的函数序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若在其定义域内存在两个实数a,b(a<b),使当x∈[a,b]时,f(x)的值域也是[a,b],则称函数f(x)为“科比函数”.若函数f(x)=k+
x+2
是“科比函数”,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数
f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2
(1)若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若f(x0)=x0,则称x0为f(x)的:“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f[f(x)]=x}.
(1)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅;
(2)设函数f(x)=3x+4,求集合A和B,并分析能否根据(1)(2)中的结论判断A=B恒成立?若能,请给出证明,若不能,请举以反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使得f(x0)=x0,则称x0为函数f(x)的不动点.若函数f(x)=
x2+a
bx-c
(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)试求函数f(x)的单调区间,
(2)已知各项不为0的数列{an}满足4Sn•f(
1
an
)=1,其中Sn表示数列{an}的前n项和,求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前题条件下,设bn=-
1
an
,Tn表示数列{bn}的前n项和,求证:T2011-1<ln2011<T2010

查看答案和解析>>

同步练习册答案